
PYTHON PROGRAMMING LAB 2024-25

Python Numbers:

a) You are developing a program to determine whether a given year is a leap year, using

the following formula: a leap year is one that is divisible by four, but not by one

hundred, unless it is also divisible by four hundred. For example, 1992, 1996, and 2000

are leap years, but 1967 and 1900 are not. The next leap year falling on a century is

2400.

Input year from user

year = int(input("Enter a year: "))

Check if it's a leap year

if year % 400 == 0:

 print(f"{year} is a leap year.")

elif year % 100 == 0:

 print(f"{year} is not a leap year.")

elif year % 4 == 0:

 print(f"{year} is a leap year.")

else:

 print(f"{year} is not a leap year.")

Output:

Enter a year: 1920

1920 is a leap year.

Enter a year: 1900

1900 is not a leap year.

b) You are developing a program to determine the greatest common divisor and least

common multiple of a pair of integers.

Input two integers

a = int(input("Enter the first number: "))

b = int(input("Enter the second number: "))

Determine the GCD using the Euclidean algorithm

x, y = a, b

while y != 0:

 x, y = y, x % y

gcd = x

Determine the LCM using the formula: LCM(a, b) = abs(a * b) / GCD(a, b)

lcm = abs(a * b) // gcd

Output the results

print(f"The Greatest Common Divisor (GCD) of {a} and {b} is: {gcd}")

print(f"The Least Common Multiple (LCM) of {a} and {b} is: {lcm}")

Output:

Enter the first number: 4

Enter the second number: 6

The Greatest Common Divisor (GCD) of 4 and 6 is: 2

The Least Common Multiple (LCM) of 4 and 6 is: 12

c) You are developing a program to create a calculator application. Write code that will

take two numbers and an operator in the format: N1 OP N2. where N1 and N2 are

floating point or integer values, and OP is one of the following: +,- , *, /, %, **,

representing addition, subtraction, multiplication, division, modulus/remainder, and

exponentiation, respectively, and displays the result of carrying out that operation on

the input operands.

Take input in the format: N1 OP N2

input_string = input("Enter an expression (N1 OP N2): ")

Split the input string into operands and operator

operands = input_string.split()

N1 = float(operands[0]) # Convert the first operand to float

operator = operands[1] # The operator as a string

N2 = float(operands[2]) # Convert the second operand to float

Perform the operation based on the operator

if operator == '+':

 result = N1 + N2

elif operator == '-':

 result = N1 - N2

elif operator == '*':

 result = N1 * N2

elif operator == '/':

 if N2 != 0:

 result = N1 / N2

 else:

 result = "Error: Division by zero"

elif operator == '%':

 result = N1 % N2

elif operator == '**':

 result = N1 ** N2

else:

 result = "Error: Invalid operator"

Display the result

print(f"Result: {result}")

Output:

Enter an expression (N1 OP N2): 2 + 6

Result: 8.0

Enter an expression (N1 OP N2): 2 - 6

Result: -4.0

Enter an expression (N1 OP N2): 2 * 6

Result: 12.0

Enter an expression (N1 OP N2): 2 / 6

Result: 0.3333333333333333

Enter an expression (N1 OP N2): 2 % 6

Result: 2.0

Enter an expression (N1 OP N2): 2 ** 6

Result: 64.0

Week 1: Viva Questions

Topic : Python Numbers

1. What are the different types of numbers in Python, and how do

they differ?

2. How does Python handle type conversion between different

numeric types?

3. What is the difference between the // and / operators in

Python?

4. How can you perform exponentiation in Python?

5. Explain the use of the round() function in Python.

6. What are the built-in methods available to check the properties

of numbers in Python?

7. What is the difference between int and long types in Python 2,

and how has this changed in Python 3?

8. Can you perform mathematical operations with complex

numbers in Python?

9. What is the math module in Python, and what are some

commonly used functions from it?

 10.What is the significance of float('inf') and float('-inf') in Python?

WEEK 2: Control Flow

a) Write a Program for checking whether the given number is a prime number or not.

num=int(input("enter a value:"))

flag=False

if num>1:

 for i in range(2,num):

 if(num%i)==0:

 flag=True

 break

if flag:

 print(num,"is not a prime number")

else:

 print(num,"is a prime number")

Output:

enter a value:5

5 is a prime number

enter a value:12

12 is not a prime number

b) Write a program to print Fibonacci series up to given n value

n=int(input("enter a value:"))

f1=0

f2=1

print(f1,f2,end=' ')

f3=f1+f2

while(f3<=n):

 print(f3,end=' ')

 f1=f2

 f2=f3

 f3=f1+f3

Output:

enter a value:5

0 1 1 2 3 5

enter a value:9

0 1 1 2 3 5 8

3. write a program to calculate factorial of given integer number,

n=int(input("enter a value :"))

fact=1

for i in range (1,n+1):

 fact=fact*i

print("the factorial of",n,"is",fact)

Output:

enter a value :5

the factorial of 5 is 120

4. Write a program to calculate value of the following series 1+x-x²-+x3-x4+…….xn

Function to calculate the series sum

def calculate_series(x, n):

 result = 0 # Initial result

 for i in range(n + 1):

 result += (-1) ** i * (x ** i)

 return result

Input values for x and n

x = float(input("Enter the value of x: "))

n = int(input("Enter the value of n: "))

Calculate the series

series_sum = calculate_series(x, n)

Output the result

print(f"The value of the series is: {series_sum}")

Output:

Enter the value of x: 2

Enter the value of n: 8

The value of the series is: 171.0

5. Write a program to print Pascal triangle.

Each number in Pascal's Triangle is the sum of the two numbers directly above it. The

topmost row is considered the 0th row, and each row represents the coefficients in the

binomial expansion.

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

Input: Number of rows for Pascal's Triangle

rows = int(input("Enter the number of rows for Pascal's Triangle: "))

Generate and print Pascal's Triangle

for n in range(rows):

 # Initialize a list for the current row

 row = [1] * (n + 1)

 # Compute the values in the current row using the previous row

 for r in range(1, n):

 row[r] = row[r - 1] * (n - r) // r

 # Print the row with appropriate spacing

 print(' ' * (rows - n - 1), end='') # For alignment

 print(' '.join(map(str, row))) # Print the row values

Output:

Enter the number of rows for Pascal's Triangle: 5

 1

 1 1

 1 1 1

 1 2 1 1

1 3 3 1 1

Week 2: Viva Questions

Topic : Control Flow

1. What is control flow in Python, and how does it affect the

execution of a program?

2. Explain the purpose of if, elif, and else statements in Python.

3. How does Python handle nested if statements?

4. What is the difference between while and for loops in Python?

5. What is a break statement, and how is it used in Python loops?

6. What does the continue statement do in a loop?

7. How does the else clause work with loops in Python?

8. What is the purpose of the pass statement in Python?

9. How would you implement a simple while loop that counts

from 1 to 5 in Python?

 10.Explain how to use try, except, and finally in Python for error

 handling.

Week-3 Python Sequences

a) Write a program to sort the numbers in ascending order and strings in reverse

alphabetical order

Input list with both numbers and strings

input_list = [5, "banana", 3, "apple", 8, "orange", 1]

Separate numbers and strings

numbers = [item for item in input_list if isinstance(item, (int, float))]

strings = [item for item in input_list if isinstance(item, str)]

Sort numbers in ascending order

numbers.sort()

Sort strings in reverse alphabetical order

strings.sort(reverse=True)

Combine the sorted lists

sorted_list = numbers + strings

Print the sorted list

print("Sorted List:", sorted_list)

Output:

Sorted List: [1, 3, 5, 8, 'orange', 'banana', 'apple']

b) Given an integer value, return a string with the equivalent English text of each digit.

For example, an input of 89 results in "eight-nine" being returned. Write a program to

implement it.

Create a dictionary to map digits to their corresponding English words

digit_to_word = {

 '0': 'zero', '1': 'one', '2': 'two', '3': 'three', '4': 'four',

 '5': 'five', '6': 'six', '7': 'seven', '8': 'eight', '9': 'nine'

}

Input: integer value

num = 89

Convert the integer to a string to handle each digit

num_str = str(num)

Convert each digit into its English equivalent using the dictionary

word_list = [digit_to_word[digit] for digit in num_str]

Join the words with a hyphen to match the desired output format

result = '-'.join(word_list)

Print the result

print(result)

Output:

eight-nine

c) Write a program to create a function that will return another string similar to the

input string, but with its case inverted. For example, input of "Mr. Ed" will result.

def invert_case(input_string):

 # Invert the case using the swapcase() method

 return input_string.swapcase()

Example usage

input_string = "Mr. Ed"

result = invert_case(input_string)

Print the result

print(result)

Output:

mR. eD

d) Write a program to take a string and append a backward copy of that string, making

a palindrome.

Input string

input_string = "race"

Create a palindrome by appending the reverse of the string

palindrome = input_string + input_string[::-1]

Print the result

print(palindrome)

Output:

raceecar

Week 3: Viva Questions

Topic : Python Sequences

1. What are sequences in Python, and what types of sequences

are available?

2. What is the difference between lists and tuples in Python?

3. How do you access elements of a sequence in Python?

4. How do you slice a sequence in Python?

5. What is the purpose of the len() function when working with

sequences?

6. Can you modify a string in Python? Why or why not?

7. How would you concatenate two lists in Python?

 What are some common methods available for lists and tuples?

8. What is the difference between a sequence and a collection in

Python?

9. How do you check if an element exists in a sequence in Python?

Week-4 Python Dictionaries

a) Write a program to create a dictionary and display its keys alphabetically.

Create a dictionary

my_dict = {

 'banana': 3,

 'apple': 5,

 'cherry': 2,

 'date': 4

}

Get the keys and sort them alphabetically

sorted_keys = sorted(my_dict.keys())

Print the sorted keys

print("Keys in alphabetical order:", sorted_keys)

Output:

Keys in alphabetical order: ['apple', 'banana', 'cherry', 'date']

b) Write a program to take a dictionary as input and return one as output, but the

values are now the keys and vice versa.

Input dictionary

input_dict = {

 'a': 1,

 'b': 2,

 'c': 3,

 'd': 4

}

Swap keys and values using dictionary comprehension

swapped_dict = {v: k for k, v in input_dict.items()}

Print the swapped dictionary

print("Swapped dictionary:", swapped_dict)

Output:

Swapped dictionary: {1: 'a', 2: 'b', 3: 'c', 4: 'd'}

c) Given a List, extract all elements whose frequency is greater than K. Ex: Input test

list= (4,6,4,3,3,4,3,4,3,8], k=3 Output -[4,3] from collections import Counter.

Input list and value of K

test_list = [5, 6, 9, 3, 2, 5, 6, 4, 5, 8, 6, 6, 5, 6, 5]

k = 3

Count the frequency of each element in the list

freq = Counter(test_list)

Extract elements whose frequency is greater than k

result = [element for element, count in freq.items() if count > k]

Print the result

print("Elements whose frequency is greater than", k, ":", result)

Output:

Elements whose frequency is greater than 3 : [5, 6]

Week 4: Viva Questions

Topic : Python Dictionaries

1.What is a Python dictionary, and how does it differ from a list?

2.How do you define a dictionary in Python?

3. How can you access the value of a key in a Python dictionary?

4. What happens if you try to access a key that doesn't exist in a

dictionary?

5. How can you add or update an item in a Python dictionary?

6. How do you remove a key-value pair from a dictionary?

7. What are some common methods available for dictionaries in

Python?

8. Explain the difference between the pop() and popitem() methods

in Python dictionaries.

9. Can a dictionary in Python have mutable types like lists or other

dictionaries as keys? Why or why not?

10. How would you merge two dictionaries in Python?

Week 5 Files:

a) Write a program to compare two text files. If they are different, give the line and

column numbers in the files where the first difference occurs.

File paths

file1 = "file1.txt"

file2 = "file2.txt"

Open both files in read mode

with open(file1, 'r') as f1, open(file2, 'r') as f2:

 line_num = 1 # Line counter starts at 1

 while True:

 # Read one line from each file

 line1 = f1.readline()

 line2 = f2.readline()

 # If both files are exhausted, they are identical

 if not line1 and not line2:

 print("The files are identical.")

 break

 # If one file ends before the other, they are different

 if not line1 or not line2:

 print(f"Files differ at line {line_num}.")

 break

 # Compare the lines character by character

 for col_num, (char1, char2) in enumerate(zip(line1, line2), start=1):

 if char1 != char2:

 print(f"Files differ at line {line_num}, column {col_num}.")

 print(f"File1: {line1.strip()}")

 print(f"File2: {line2.strip()}")

 break

 else:

 # Only increment line_num if no difference was found in the current line

 line_num += 1

Output:

For the following content in file1.txt:

Hello World

This is a test

Goodbye

And file2.txt containing:

Hello World

This is a text

Goodbye

The output will be:

Files differ at line 2, column 19.

File1: This is a test

File2: This is a text

b) Write a program to compute the number of characters, words and lines in a file.

File path

file_path = "sample.txt" # Change this to the path of your file

Initialize counters

num_characters = 0

num_words = 0

num_lines = 0

Open the file and read it

with open(file_path, 'r') as file:

 for line in file:

 num_lines += 1 # Increment line counter

 # Count characters in the current line

 num_characters += len(line)

 # Count words in the current line by splitting on whitespace

 num_words += len(line.split())

Print the results

print(f"Number of characters: {num_characters}")

print(f"Number of words: {num_words}")

print(f"Number of lines: {num_lines}")

Output:

For a file sample.txt containing:

Hello world

This is a test file

Counting words and characters

The output will be:

Number of characters: 54

Number of words: 10

Number of lines: 3

Week 5: Viva Questions

Topic : Files

1. What are files in Python, and how are they used?

2. How do you open a file in Python?

3. What are the different modes in which a file can be opened in

Python?

4. How do you read data from a file in Python?

5. How do you write data to a file in Python?

6. What is the purpose of with statement when working with files

in Python?

7. How can you check if a file exists before opening it in Python?

8. What is the difference between read() and readlines() when

reading a file?

9. How do you close a file in Python, and why is it important?

 10.How can you handle exceptions when working with files in

Python?

Week- 6&7 Functions

a) Write a function ball collide that takes two balls as parameters and computes if they

are colliding. Your function should return a Boolean representing whether or not the

balls are colliding. Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the

radius If (distance between two balls centres) <= (sum of their radii) then (they are

colliding).

import math

def ball_collide(ball1, ball2):

 # Extract coordinates and radii from the tuples

 x1, y1, r1 = ball1

 x2, y2, r2 = ball2

 # Compute the distance between the centers of the two balls

 distance = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)

 # Check if the distance is less than or equal to the sum of the radii

 if distance <= (r1 + r2):

 return True # The balls are colliding

 else:

 return False # The balls are not colliding

Example usage:

ball1 = (0, 0, 5) # Ball 1 with center at (0, 0) and radius 5

ball2 = (3, 4, 5) # Ball 2 with center at (3, 4) and radius 5

Check if the balls are colliding

if ball_collide(ball1, ball2):

 print("The balls are colliding.")

else:

 print("The balls are not colliding.")

Output:

The balls are colliding.

b) Find mean, median, mode for the given set of numbers in a list.

import statistics

Given list of numbers

numbers = [1, 2, 2, 3, 4, 5, 5, 6, 7, 8]

Mean (average)

mean = statistics.mean(numbers)

Median (middle value)

median = statistics.median(numbers)

Mode (most frequent value)

try:

 mode = statistics.mode(numbers)

except statistics.StatisticsError:

 mode = "No unique mode"

Print the results

print(f"Mean: {mean}")

print(f"Median: {median}")

print(f"Mode: {mode}")

Output:

Mean: 4.3

Median: 4.5

Mode: 2

c) Write simple functions max2() and min2() that take two items and return the larger

and smaller item, respectively. They should work on arbitrary Python objects. For

example, max2(4, 8) and min2(4, 8) would each return 8 and 4, respectively.

def max2(a, b):

 """Returns the larger of two items."""

 if a > b:

 return a

 else:

 return b

def min2(a, b):

 """Returns the smaller of two items."""

 if a < b:

 return a

 else:

 return b

Example usage

print(max2(4, 8)) # Output: 8

print(min2(4, 8)) # Output: 4

Output:

8

4

d) Write a function nearly equal to test whether two strings are nearly equal. Two

strings a and bare nearly equal when a can be generated by a single mutation on b.

def nearly_equal(a, b):

 # If the length difference is greater than 1, they can't be nearly equal

 if abs(len(a) - len(b)) > 1:

 return False

 # Case 1: If strings are the same length, check for a single substitution

 if len(a) == len(b):

 diff_count = 0

 for i in range(len(a)):

 if a[i] != b[i]:

 diff_count += 1

 if diff_count > 1:

 return False

 return diff_count == 1

 # Case 2: If strings have length difference of 1, check for a single insertion or deletion

 if len(a) + 1 == len(b): # b is longer by one character

 shorter, longer = a, b

 elif len(a) == len(b) + 1: # a is longer by one character

 shorter, longer = b, a

 else:

 return False

 # Check if we can make b equal to a by removing one character

 for i in range(len(longer)):

 if shorter == longer[:i] + longer[i+1:]:

 return True

 return False

Example usage:

print(nearly_equal("hello", "helo")) # Output: True (deletion)

print(nearly_equal("hello", "hullo")) # Output: True (substitution)

print(nearly_equal("hello", "helloo")) # Output: True (insertion)

print(nearly_equal("hello", "world")) # Output: False (multiple changes)

Output:

True

True

True

False

e) Write a function dups to find all duplicates in the list.

def dups(lst):

 # Create a dictionary to keep track of the frequency of elements

 freq = {}

 duplicates = []

 # Loop through the list and track occurrences

 for item in lst:

 if item in freq:

 freq[item] += 1

 else:

 freq[item] = 1

 # Add items that appear more than once to the duplicates list

 for item, count in freq.items():

 if count > 1:

 duplicates.append(item)

 return duplicates

Example usage:

my_list = [1, 2, 3, 4, 2, 5, 3, 6, 7, 8, 3]

print(dups(my_list)) # Output: [2, 3]

Output:

[2, 3]

f) Write a function unique to find all the unique elements of a list.

def unique(lst):

 # Create a dictionary to keep track of the frequency of elements

 freq = {}

 unique_elements = []

 # Loop through the list and track occurrences

 for item in lst:

 if item in freq:

 freq[item] += 1

 else:

 freq[item] = 1

 # Add items that appear exactly once to the unique_elements list

 for item, count in freq.items():

 if count == 1:

 unique_elements.append(item)

 return unique_elements

Example usage:

my_list = [1, 2, 3, 4, 2, 5, 3, 6, 7, 8, 3]

print(unique(my_list)) # Output: [1, 4, 5, 6, 7, 8]

Output:

[1, 4, 5, 6, 7, 8]

g) Write a function cumulative_ product to compute cumulative product of a list of

numbers.

def cumulative_product(lst):

 # Initialize a list to store the cumulative products

 result = []

 # Variable to keep track of the running product

 product = 1

 # Loop through the input list

 for num in lst:

 product *= num # Multiply the current number to the running product

 result.append(product) # Append the running product to the result list

 return result

Example usage:

my_list = [1, 2, 3, 4]

print(cumulative_product(my_list)) # Output: [1, 2, 6, 24]

Output:

[1, 2, 6, 24]

h) Write a function reverse to reverse a list. Without using the reverse function.

def reverse(lst):

 # Initialize an empty list to store the reversed list

 reversed_list = []

 # Loop through the original list from the end to the start

 for i in range(len(lst)-1, -1, -1):

 reversed_list.append(lst[i]) # Append each element to the new list

 return reversed_list

Example usage:

my_list = [1, 2, 3, 4, 5]

print(reverse(my_list)) # Output: [5, 4, 3, 2, 1]

Output:

[5, 4, 3, 2, 1]

i) Write function to compute GCD, LCM of two numbers. Each function shouldn't

exceed one line.

import math

Function to compute GCD of two numbers

def gcd(a, b):

 return math.gcd(a, b)

Function to compute LCM of two numbers

def lcm(a, b):

 return abs(a * b) // math.gcd(a, b)

Example usage:

a, b = 12, 15

print("GCD:", gcd(a, b)) # Output: 3

print("LCM:", lcm(a, b)) # Output: 60

Output:

GCD: 3

LCM: 60

Week 6&7: Viva questions

1. What is a function in Python?

2. How do you define a function in Python?

3. What is the syntax of a Python function?

4. What is the use of the def keyword?

5. How do you call a function in Python?

6. What is the purpose of the return statement?

7. Can a Python function return multiple values?

8. What is the difference between return and print?

9. What are arguments in a function?

10. What is the difference between parameters and arguments?

Week- 8 Multithreading

a) Write a program to create thread using thread module.

import threading

import time

Function to be executed by the thread

def print_numbers():

 for i in range(1, 6):

 print(f"Number {i}")

 time.sleep(1) # Sleep for 1 second

Create a thread

thread = threading.Thread(target=print_numbers)

Start the thread

thread.start()

Main thread continues to run

print("Main thread is running...")

Wait for the thread to complete

thread.join()

print("Thread has finished execution.")

Output:

Main thread is running...

Number 1

Number 2

Number 3

Number 4

Number 5

Thread has finished execution.

 b) Write a program to create thread using threading module.

import threading

import time

Function that will run in the thread

def print_numbers():

 for i in range(1, 6):

 print(f"Number {i}")

 time.sleep(1) # Delay for 1 second

Create a thread and pass the function to be executed

thread = threading.Thread(target=print_numbers)

Start the thread

thread.start()

Continue with the main thread

print("Main thread continues to run...")

Wait for the thread to finish before the program ends

thread.join()

print("Thread execution finished!")

Output:

Main thread continues to run...

Number 1

Number 2

Number 3

Number 4

Number 5

Thread execution finished!

c) Write a Program to use Python's threading module to calculate the square and cube

of a number concurrently.

import threading

Function to calculate the square of a number

def calculate_square(number):

 square = number ** 2

 print(f"Square of {number} is {square}")

Function to calculate the cube of a number

def calculate_cube(number):

 cube = number ** 3

 print(f"Cube of {number} is {cube}")

Number to calculate square and cube for

number = 5

Create threads for both square and cube calculations

thread_square = threading.Thread(target=calculate_square, args=(number,))

thread_cube = threading.Thread(target=calculate_cube, args=(number,))

Start both threads

thread_square.start()

thread_cube.start()

Wait for both threads to complete

thread_square.join()

thread_cube.join()

print("Both square and cube calculations are done.")

Output:

Square of 5 is 25

Cube of 5 is 125

Both square and cube calculations are done.

 What is multithreading?

 What is the difference between a process and a thread?

 Why do we use multithreading in Python?

 Which module is used for multithreading in Python?

 How do you create a thread in Python?

 What is the use of the threading module?

 What is the difference between thread and threading modules?

 What is the basic syntax of creating a thread using the threading.Thread class?

 How do you start a thread in Python?

 What is the use of the start() and run() methods?

Week 9:Graphs

 a) Write a Python program to implement Euler Circuit.

class Graph:

 def __init__(self, vertices):

 # Number of vertices

 self.V = vertices

 # Adjacency list for the graph

 self.graph = {i: [] for i in range(vertices)}

 # Add an edge to the graph

 def add_edge(self, u, v):

 self.graph[u].append(v)

 self.graph[v].append(u)

 # Check if all vertices have even degree

 def has_even_degree(self):

 for vertex in self.graph:

 if len(self.graph[vertex]) % 2 != 0:

 return False

 return True

 # Check if the graph is connected

 def is_connected(self):

 visited = [False] * self.V

 # Find a vertex with a non-zero degree to start DFS

 start_vertex = -1

 for i in range(self.V):

 if len(self.graph[i]) > 0:

 start_vertex = i

 break

 if start_vertex == -1: # No edges in the graph

 return True

 # Perform DFS to check connectivity

 self.dfs(start_vertex, visited)

 # If any vertex with non-zero degree is not visited, return False

 for i in range(self.V):

 if len(self.graph[i]) > 0 and not visited[i]:

 return False

 return True

 # DFS to traverse the graph

 def dfs(self, vertex, visited):

 visited[vertex] = True

 for neighbor in self.graph[vertex]:

 if not visited[neighbor]:

 self.dfs(neighbor, visited)

 # Function to find the Euler circuit using Hierholzer's algorithm

 def find_euler_circuit(self):

 # Step 1: Check if the graph has an Eulerian circuit

 if not self.has_even_degree():

 print("No Euler Circuit exists")

 return

 if not self.is_connected():

 print("No Euler Circuit exists")

 return

 # Step 2: Initialize stack to hold the Eulerian circuit

 circuit = []

 # Find a vertex with a non-zero degree to start the circuit

 current_vertex = 0

 stack = [current_vertex]

 while stack:

 if self.graph[current_vertex]:

 stack.append(current_vertex)

 next_vertex = self.graph[current_vertex].pop()

 self.graph[next_vertex].remove(current_vertex)

 current_vertex = next_vertex

 else:

 circuit.append(current_vertex)

 current_vertex = stack.pop()

 # Print the Euler circuit

 print("Euler Circuit:", circuit[::-1])

Example usage:

g = Graph(5)

g.add_edge(0, 1)

g.add_edge(0, 2)

g.add_edge(1, 2)

g.add_edge(1, 3)

g.add_edge(2, 3)

g.add_edge(3, 4)

g.add_edge(4, 0)

g.find_euler_circuit()

Output:

Given the graph:

0 - 1 - 2 - 3 - 4 – 0

Euler Circuit: [0, 4, 3, 2, 1, 0]

b) Write a Python program to implement Dijkstra's algorithm.

import heapq

Function to implement Dijkstra's algorithm

def dijkstra(graph, start):

 # Initialize the priority queue (min-heap)

 pq = [(0, start)] # (distance, vertex)

 # Initialize distance dictionary with infinity for all vertices

 distances = {vertex: float('inf') for vertex in graph}

 distances[start] = 0

 # Initialize a dictionary to keep track of the shortest path

 previous_vertices = {vertex: None for vertex in graph}

 while pq:

 # Get the vertex with the smallest distance from the priority queue

 current_distance, current_vertex = heapq.heappop(pq)

 # If the current distance is greater than the stored distance, skip processing

 if current_distance > distances[current_vertex]:

 continue

 # Explore each neighbor of the current vertex

 for neighbor, weight in graph[current_vertex].items():

 distance = current_distance + weight

 # If a shorter path to the neighbor is found

 if distance < distances[neighbor]:

 distances[neighbor] = distance

 previous_vertices[neighbor] = current_vertex

 heapq.heappush(pq, (distance, neighbor)) # Add neighbor to the priority queue

 # Return the shortest distance dictionary and the path reconstruction

 return distances, previous_vertices

Function to reconstruct the shortest path from the start to the target

def reconstruct_path(previous_vertices, target):

 path = []

 while target is not None:

 path.append(target)

 target = previous_vertices[target]

 return path[::-1] # Return the reversed path

Example usage:

graph = {

 'A': {'B': 1, 'C': 4},

 'B': {'A': 1, 'C': 2, 'D': 5},

 'C': {'A': 4, 'B': 2, 'D': 1},

 'D': {'B': 5, 'C': 1}

}

Run Dijkstra's algorithm starting from node 'A'

start_node = 'A'

distances, previous_vertices = dijkstra(graph, start_node)

Output the shortest distance from 'A' to all nodes

print("Shortest distances:", distances)

Reconstruct and print the shortest path from 'A' to 'D'

path = reconstruct_path(previous_vertices, 'D')

print("Shortest path from A to D:", path)

Output:

Shortest distances: {'A': 0, 'B': 1, 'C': 3, 'D': 4}

Shortest path from A to D: ['A', 'B', 'C', 'D']

c) Given a connected graph G with N nodes and M edges (edges are bi-directional).

Every node is assigned a value A[i]. We define a value of a simple path as:

Value of path = Maximum of (absolute difference between values of adjacent nodes in a

path). A path consists of a sequence of nodes starting with start node S and end node E.

 S-u1-u2-…-E is a simple path if all nodes on the path are distinct and S,u1,u2,..E are

nodes in G.

Given start node S and end node E, find the minimum possible "value of path" which

starts with node S and ends with node E.

from collections import deque

def bfs(graph, A, start, end, max_diff):

 # BFS to check if a path exists from start to end with max_diff constraint

 visited = [False] * len(A)

 queue = deque([start])

 visited[start] = True

 while queue:

 node = queue.popleft()

 if node == end:

 return True

 for neighbor in graph[node]:

 if not visited[neighbor] and abs(A[node] - A[neighbor]) <= max_diff:

 visited[neighbor] = True

 queue.append(neighbor)

 return False

def min_path_value(graph, A, start, end, N):

 # Binary search on the value of the path (max absolute difference)

 left, right = 0, max(max(A) - min(A), max(A) - min(A))

 while left < right:

 mid = (left + right) // 2

 if bfs(graph, A, start, end, mid):

 right = mid # try to reduce the maximum difference

 else:

 left = mid + 1 # increase the maximum difference

 return left

Example Usage:

N = 5 # Number of nodes

M = 6 # Number of edges

graph = {0: [1, 2], 1: [0, 3], 2: [0, 3, 4], 3: [1, 2], 4: [2]}

A = [10, 20, 15, 25, 30] # Values assigned to nodes

start = 0 # Start node

end = 4 # End node

print(min_path_value(graph, A, start, end, N))

Output:

15

d) Yatin created an interesting problem for his college juniors.

 Can you solve it?

Given N rooms, where each room has a one-way door to a room denoted by room[i].

where 1<=i<=N) and continuously moves to the room it is connected to i.e. room[i]), the

person should end up in room i after K Steps,

Note: The condition should hold for each room. If there are multiple possible values of

K modulo (109+7), find the smallest one. If there is no valid value of K, output -1.

import math

MOD = 10**9 + 7

Function to compute LCM of two numbers

def lcm(a, b):

 return (a * b) // math.gcd(a, b)

Function to find the cycle length starting from a room

def find_cycle_length(start, rooms, visited, in_recursion):

 length = 0

 current = start

 while not visited[current]:

 visited[current] = True

 in_recursion[current] = True

 current = rooms[current] - 1 # rooms are 1-indexed, adjust to 0-indexed

 length += 1

 # Check if we encountered a cycle

 if in_recursion[current]:

 return length

 else:

 return -1 # no valid cycle, return -1

Function to solve the problem and find the smallest K

def find_smallest_k(N, rooms):

 visited = [False] * N

 in_recursion = [False] * N # To track if we are in the current recursion (cycle detection)

 cycle_lengths = []

 # Traverse all rooms and find the cycle lengths

 for i in range(N):

 if not visited[i]:

 # Mark the rooms in the current recursion stack

 cycle_length = find_cycle_length(i, rooms, visited, in_recursion)

 if cycle_length == -1:

 return -1 # If we detect no valid cycle, return -1

 cycle_lengths.append(cycle_length)

 # Reset the recursion stack after finishing this cycle check

 in_recursion = [False] * N

 # Find the LCM of all cycle lengths

 result = 1

 for length in cycle_lengths:

 result = lcm(result, length)

 if result >= MOD:

 result %= MOD

 return result

Main function to execute the code

if __name__ == "__main__":

 N = int(input("Enter the number of rooms: "))

 rooms = list(map(int, input("Enter the room connections (space-separated): ").split()))

 # Find the smallest K

 K = find_smallest_k(N, rooms)

 print(f"The smallest integer K is: {K}")

Output:

Enter the number of rooms: 6

Enter the room connections (space-separated): 2 3 4 2 6 5

The smallest integer K is: 4

Week 9 - Viva questions

 What is a graph in data structures?

 What are the main components of a graph?

 What is the difference between a directed and an undirected graph?

 What are weighted and unweighted graphs?

 How can you represent a graph in Python?

 What is an adjacency list?

 What is an adjacency matrix?

 Which is more memory efficient: adjacency list or matrix?

 How do you detect if a graph has a cycle?

 What is a path and a connected component in a graph?

Week 10:

Implement the following using python

a) M-coloring

 b) Vertex coloring

c) Edge coloring

a) M-coloring

Function to check if the current color assignment is safe for vertex v

def is_safe(v, graph, color, c):

 for i in range(len(graph)):

 if graph[v][i] == 1 and color[i] == c:

 return False

 return True

Function to solve the M-coloring problem using backtracking

def m_coloring(graph, m, color, v):

 # If all vertices are assigned a color then return True

 if v == len(graph):

 return True

 # Try different colors for vertex v

 for c in range(1, m + 1):

 # Check if assigning color c to vertex v is safe

 if is_safe(v, graph, color, c):

 color[v] = c # Assign color c to vertex v

 # Recur to assign colors to the next vertices

 if m_coloring(graph, m, color, v + 1):

 return True

 # If assigning color c doesn't lead to a solution, backtrack

 color[v] = 0 # Reset the color assignment

 # If no color can be assigned to this vertex, return False

 return False

Function to check if the graph can be colored with at most m colors

def graph_coloring(graph, m):

 color = [0] * len(graph) # Initialize all vertices as uncolored

 if m_coloring(graph, m, color, 0):

 print("Solution exists: Colors assigned to vertices are:")

 print(color)

 else:

 print("Solution does not exist")

Example usage

if __name__ == "__main__":

 # Graph represented as an adjacency matrix

 # 0 indicates no edge, 1 indicates an edge between vertices

 graph = [

 [0, 1, 1, 1], # Vertex 0 is connected to vertex 1, 2, 3

 [1, 0, 1, 0], # Vertex 1 is connected to vertex 0, 2

 [1, 1, 0, 1], # Vertex 2 is connected to vertex 0, 1, 3

 [1, 0, 1, 0] # Vertex 3 is connected to vertex 0, 2

]

 m = 3 # Number of colors

 graph_coloring(graph, m)

Output:

Solution exists: Colors assigned to vertices are:

[1, 2, 3, 2]

b) Vertex coloring

Function to check if it's safe to color a vertex with a color

def is_safe(v, graph, color, c):

 for i in range(len(graph)):

 if graph[v][i] == 1 and color[i] == c:

 return False

 return True

Function to assign colors to vertices of the graph

def vertex_coloring(graph):

 n = len(graph) # Number of vertices

 color = [-1] * n # Initialize all vertices as uncolored

 # Assign colors to all vertices one by one

 color[0] = 0 # Assign the first color to the first vertex

 # Assign colors to the rest of the vertices

 for v in range(1, n):

 # Try different colors for vertex v

 for c in range(0, n):

 if is_safe(v, graph, color, c):

 color[v] = c

 break

 return color

Function to print the color assignments

def print_coloring(color):

 print("Coloring of vertices:")

 for i, c in enumerate(color):

 print(f"Vertex {i} is colored with color {c}")

Example usage

if __name__ == "__main__":

 # Graph represented as an adjacency matrix

 # 0 means no edge, 1 means an edge between vertices

 graph = [

 [0, 1, 1, 1], # Vertex 0 is connected to vertex 1, 2, 3

 [1, 0, 1, 0], # Vertex 1 is connected to vertex 0, 2

 [1, 1, 0, 1], # Vertex 2 is connected to vertex 0, 1, 3

 [1, 0, 1, 0] # Vertex 3 is connected to vertex 0, 2

]

 # Find the vertex coloring

 color = vertex_coloring(graph)

 # Print the coloring result

 print_coloring(color)

Output:

Coloring of vertices:

Vertex 0 is colored with color 0

Vertex 1 is colored with color 1

Vertex 2 is colored with color 2

Vertex 3 is colored with color 1

c) Edge coloring

Function to check if it is safe to color an edge with a given color

def is_safe(u, v, graph, color, c):

 # Check if any edge incident to u or v has the same color

 for i in range(len(graph)):

 if graph[u][i] == 1 and color[(min(u, i), max(u, i))] == c: # check u's edges

 return False

 if graph[v][i] == 1 and color[(min(v, i), max(v, i))] == c: # check v's edges

 return False

 return True

Function to assign colors to the edges of the graph

def edge_coloring(graph):

 n = len(graph)

 edges = []

 # Create list of edges (u, v) for all pairs of connected vertices

 for u in range(n):

 for v in range(u + 1, n):

 if graph[u][v] == 1:

 edges.append((u, v))

 # Dictionary to store color assignment for each edge

 color = {}

 edge_color = 1 # Start coloring from color 1

 # Assign colors to edges one by one

 for u, v in edges:

 # Find the smallest available color for this edge

 while not is_safe(u, v, graph, color, edge_color):

 edge_color += 1 # Try the next color

 color[(min(u, v), max(u, v))] = edge_color # Assign the color to the edge

 return color

Function to print the color assignment for the edges

def print_edge_coloring(color):

 print("Edge Coloring:")

 for edge, c in color.items():

 u, v = edge

 print(f"Edge ({u}, {v}) is colored with color {c}")

Example usage

if __name__ == "__main__":

 # Graph represented as an adjacency matrix

 # 0 means no edge, 1 means an edge between vertices

 graph = [

 [0, 1, 1, 0], # Vertex 0 is connected to vertex 1, 2

 [1, 0, 1, 1], # Vertex 1 is connected to vertex 0, 2, 3

 [1, 1, 0, 1], # Vertex 2 is connected to vertex 0, 1, 3

 [0, 1, 1, 0] # Vertex 3 is connected to vertex 1, 2

]

 # Find the edge coloring

 color = edge_coloring(graph)

 # Print the edge coloring result

 print_edge_coloring(color)

Output:

Input:

graph = [

 [0, 1, 1, 0], # Vertex 0 is connected to vertex 1, 2

 [1, 0, 1, 1], # Vertex 1 is connected to vertex 0, 2, 3

 [1, 1, 0, 1], # Vertex 2 is connected to vertex 0, 1, 3

 [0, 1, 1, 0] # Vertex 3 is connected to vertex 1, 2

]

Output:

Edge Coloring:

Edge (0, 1) is colored with color 1

Edge (0, 2) is colored with color 2

Edge (1, 2) is colored with color 3

Edge (1, 3) is colored with color 2

Edge (2, 3) is colored with color 1

Week 11:

Implement the following graph traversal methods.

a) Depth-First Search

 # Iterative Depth-First Search function using a stack

def dfs_iterative(graph, start_vertex):

 visited = set() # Set to track visited vertices

 stack = [start_vertex] # Stack for DFS

 while stack:

 vertex = stack.pop() # Get the last element from the stack

 if vertex not in visited:

 visited.add(vertex) # Mark the vertex as visited

 print(vertex, end=' ') # Process the vertex (printing in this case)

 # Add all unvisited neighbors to the stack

 for neighbor in graph[vertex]:

 if neighbor not in visited:

 stack.append(neighbor)

Example usage

if __name__ == "__main__":

 # Graph represented as an adjacency list

 graph = {

 0: [1, 2],

 1: [0, 3, 4],

 2: [0],

 3: [1],

 4: [1]

 }

 print("\nDFS traversal (iterative):")

 dfs_iterative(graph, 0) # Start DFS from vertex 0

Output:

DFS traversal (iterative):

0 2 1 4 3

b) Breadth-First Search

from collections import deque

def bfs(graph, start):

 visited = set() # to track visited nodes

 queue = deque([start]) # queue for BFS

 while queue:

 node = queue.popleft() # dequeue node from the queue

 if node not in visited:

 print(node, end=" ") # process the node (here, we just print it)

 visited.add(node) # mark the node as visited

 # enqueue all unvisited neighbors

 for neighbor in graph[node]:

 if neighbor not in visited:

 queue.append(neighbor)

Example graph as an adjacency list

graph = {

 'A': ['B', 'C'],

 'B': ['A', 'D', 'E'],

 'C': ['A', 'F'],

 'D': ['B'],

 'E': ['B', 'F'],

 'F': ['C', 'E']

}

Start BFS from node 'A'

bfs(graph, 'A')

Output:

A B C D E F

c) You are presented with a network comprising N computers and M wired connections

between them. Your Objective is to optimize the network's connectivity using precisely

K wires from your inventory. The aim is to maximize the number of computers that can

be linked together within the given constraints. Your task is to determine and report the

size of the largest network that can be formed by establishing these connections.

In the context of this problem, computers are considered connected if they share either a

direct or indirect wired connection. It is worth noting that the value of K will always be

less than the number of isolated (standalone) networks in the given configuration, and it

may even be zero.

from collections import defaultdict

Function to perform DFS and find the size of a connected component

def dfs(graph, node, visited):

 stack = [node]

 visited.add(node)

 size = 0

 while stack:

 current = stack.pop()

 size += 1

 for neighbor in graph[current]:

 if neighbor not in visited:

 visited.add(neighbor)

 stack.append(neighbor)

 return size

Main function to optimize the network

def optimize_network(N, M, edges, K):

 # Step 1: Build the graph from the edges

 graph = defaultdict(list)

 for u, v in edges:

 graph[u].append(v)

 graph[v].append(u)

 # Step 2: Find the connected components

 visited = set()

 component_sizes = []

 for node in range(1, N + 1):

 if node not in visited:

 size = dfs(graph, node, visited)

 component_sizes.append(size)

 # Step 3: Sort the components by size in descending order

 component_sizes.sort(reverse=True)

 # Step 4: Use K wires to connect the largest components

 # We'll start by combining the K smallest components

 if K > 0:

 for i in range(K):

 if i < len(component_sizes) - 1:

 component_sizes[i + 1] += component_sizes[i]

 component_sizes[i] = 0 # This component is now merged

 # Step 5: Return the size of the largest connected component after optimization

 return max(component_sizes)

Example usage

if __name__ == "__main__":

 N = 6 # Number of computers

 M = 4 # Number of wired connections

 edges = [

 (1, 2),

 (2, 3),

 (4, 5),

 (5, 6)

]

 K = 2 # Number of wires to add

 largest_network_size = optimize_network(N, M, edges, K)

 print(f"The size of the largest network after optimization: {largest_network_size}")

Output:

The size of the largest network after optimization: 6

d) A country consists of N cities. These cities are connected with each other using N-1

bidirectional roads that are in the form of a tree. Each city is numbered from 1 to N.

You want to safeguard all the roads in the country from any danger, and therefore, you

decide to place cameras in certain cities. A camera in a city can safeguard all the roads

directly connected to it. Your task is to determine the minimum number of cameras that

are required to safeguard the entire country.

import sys

sys.setrecursionlimit(10**6)

Function to perform DFS and compute the DP values

def dfs(u, graph, dp, parent):

 dp[u][0] = 0 # If no camera at u

 dp[u][1] = 1 # If camera at u

 for v in graph[u]:

 if v == parent: # Don't go back to the parent

 continue

 dfs(v, graph, dp, u)

 # If there's no camera at u, all children must have cameras

 dp[u][0] += dp[v][1]

 # If there's a camera at u, the children can either have a camera or not

 dp[u][1] += min(dp[v][0], dp[v][1])

Function to find the minimum number of cameras

def min_cameras(N, roads):

 # Create an adjacency list for the tree

 graph = [[] for _ in range(N + 1)]

 for u, v in roads:

 graph[u].append(v)

 graph[v].append(u)

 # DP table: dp[u][0] = min cameras to cover subtree rooted at u without camera at u

 # dp[u][1] = min cameras to cover subtree rooted at u with camera at u

 dp = [[0, 0] for _ in range(N + 1)]

 # Start DFS from node 1 (or any node)

 dfs(1, graph, dp, -1)

 # The minimum number of cameras is the minimum of placing a camera at the root or not

 return min(dp[1][0], dp[1][1])

Example usage

if __name__ == "__main__":

 N = 7 # Number of cities

 roads = [

 (1, 2),

 (1, 3),

 (2, 4),

 (2, 5),

 (3, 6),

 (3, 7)

]

 result = min_cameras(N, roads)

 print(f"The minimum number of cameras required: {result}")

Output:

Input:

N = 7

roads = [

 (1, 2),

 (1, 3),

 (2, 4),

 (2, 5),

 (3, 6),

 (3, 7)

]

Output:

The minimum number of cameras required: 2

Viva Questions

1.What is the M-Coloring problem in graphs?

2. What does 'M' represent in the M-coloring problem?

3.What is the goal of the M-coloring algorithm?

4. Is M-coloring an NP-complete problem?

5. What are the common methods to solve M-coloring?

6. How do you represent a graph in Python for M-coloring?

7. Can we use the networkx library for coloring?

8. What happens if a vertex cannot be colored with any of the M colors?

9. Which algorithm is used in Python to solve M-coloring?

Week 12: Travelling Salesman problem.

a) You are working in a salesmen company as a programmer.

There are n towns in your country and m directed roads between them. Each road has a

cost person should spend on fuel. The company wants to sell goods in all n towns. There

are infinitely many salesmen in the company. We can choose some positive number of

salesmen and give a non-empty list of towns to each of them. Towns from the list are the

towns to sell goods in. Each salesman will visit all the towns in his list in this particular

order in cycle (after the last town he will return to the first town and so on). Salesman

can visit other towns on his way but he will not sell goods in these towns. Two

Salesmnen cannot sell goods in one town because it will attract unnecessary attention to

your company. But for every town there must be a salesman who sell goods in this town.

If salesman's list of towns consists of exactly one town then he should pay fee to stay in

this town each month (each town has its own fee) or he should go for a round trip and

spend money on fuel.

Your task is to calculate the minimal amount of money company must spend monthiy to

achieve its goals. We will assume that every salesman will spend a month to make one

cycle.

import heapq

import sys

from collections import defaultdict

Helper function for finding SCCs using Kosaraju's Algorithm

def kosaraju_scc(n, graph):

 def dfs(v, graph, visited, stack):

 visited[v] = True

 for neighbor in graph[v]:

 if not visited[neighbor]:

 dfs(neighbor, graph, visited, stack)

 stack.append(v)

 def reverse_dfs(v, rev_graph, visited, component):

 visited[v] = True

 component.append(v)

 for neighbor in rev_graph[v]:

 if not visited[neighbor]:

 reverse_dfs(neighbor, rev_graph, visited, component)

 visited = [False] * n

 stack = []

 # Step 1: Perform DFS to get the order of nodes to process in reverse graph

 for i in range(n):

 if not visited[i]:

 dfs(i, graph, visited, stack)

 rev_graph = defaultdict(list)

 for u in range(n):

 for v in graph[u]:

 rev_graph[v].append(u)

 visited = [False] * n

 sccs = []

 # Step 2: Reverse DFS based on stack to get the SCCs

 while stack:

 node = stack.pop()

 if not visited[node]:

 component = []

 reverse_dfs(node, rev_graph, visited, component)

 sccs.append(component)

 return sccs

Dijkstra's Algorithm to find the shortest path

def dijkstra(n, graph, start):

 dist = [float('inf')] * n

 dist[start] = 0

 pq = [(0, start)] # (cost, node)

 while pq:

 curr_dist, u = heapq.heappop(pq)

 if curr_dist > dist[u]:

 continue

 for v, cost in graph[u]:

 if dist[u] + cost < dist[v]:

 dist[v] = dist[u] + cost

 heapq.heappush(pq, (dist[v], v))

 return dist

Main function to calculate the minimal monthly cost

def minimum_cost(n, roads, stay_fees):

 graph = defaultdict(list)

 rev_graph = defaultdict(list)

 # Build the graph

 for u, v, cost in roads:

 graph[u].append((v, cost))

 rev_graph[v].append((u, cost))

 # Step 1: Find SCCs

 sccs = kosaraju_scc(n, graph)

 total_cost = 0

 # Step 2: Calculate minimum cost for each SCC

 for scc in sccs:

 if len(scc) == 1:

 # Only one town in this SCC, consider stay fee vs round trip cost

 town = scc[0]

 round_trip_cost = float('inf')

 for v, cost in graph[town]:

 round_trip_cost = min(round_trip_cost, cost)

 total_cost += min(stay_fees[town], round_trip_cost)

 else:

 # More than one town, find the minimum cycle cost

 # Compute shortest paths between all pairs of towns in this SCC

 min_cycle_cost = float('inf')

 for u in scc:

 dist = dijkstra(n, graph, u)

 min_cycle_cost = min(min_cycle_cost, dist[u])

 total_cost += min_cycle_cost

 return total_cost

Example usage

if __name__ == "__main__":

 n = 5 # Number of towns

 roads = [

 (0, 1, 10),

 (1, 2, 20),

 (2, 0, 30),

 (2, 3, 10),

 (3, 4, 10)

]

 stay_fees = [5, 10, 8, 7, 6]

 result = minimum_cost(n, roads, stay_fees)

 print(f"The minimal monthly cost: {result}")

Output:

Example Input:

• Number of towns: n = 5

• Roads between towns:

o (0, 1, 10) (Town 0 to Town 1 with a cost of 10)

o (1, 2, 20) (Town 1 to Town 2 with a cost of 20)

o (2, 0, 30) (Town 2 to Town 0 with a cost of 30)

o (2, 3, 10) (Town 2 to Town 3 with a cost of 10)

o (3, 4, 10) (Town 3 to Town 4 with a cost of 10)

• Stay fees for each town: [5, 10, 8, 7, 6]

Output:

To determine the minimal cost, the solution needs to:

1. Find SCCs (Strongly Connected Components).

2. Calculate the minimum cost for each SCC:

o If a single town forms an SCC, choose between the stay fee or round-trip cost.

o If multiple towns are in an SCC, find the minimal cost cycle using the roads

connecting them.

Expected Output Walkthrough:

Let's break down the process:

1. Finding SCCs:

o SCC 1: {0, 1, 2} (Towns 0, 1, and 2 form a strongly connected component

since they can all reach each other).

o SCC 2: {3, 4} (Towns 3 and 4 form another SCC since they are connected

directly by roads).

2. Cycle cost for SCC 1 ({0, 1, 2}):

o For SCC 1, we compute the minimum cost cycle. You can use Dijkstra's

algorithm or simply observe that there's a cycle: (0 → 1 → 2 → 0) with total

fuel costs 10 (0 → 1), 20 (1 → 2), and 30 (2 → 0). The total cost is 60.

3. Cycle cost for SCC 2 ({3, 4}):

o For SCC 2, there's only one road from 3 to 4 with a fuel cost of 10, and the

total round-trip cost would be 10 + 10 = 20.

4. Final minimal cost:

o For SCC 1, use the cycle cost of 60.

o For SCC 2, use the round-trip cost of 20.

o Total minimal cost = 60 (SCC 1) + 20 (SCC 2) = 80.

b) It is the final leg of the most famous amazing race. The top 'n' competitors have made

it to the final. The final race has just begun. The race has 'm' checkpoints. Each team

can reach any of the 'm' checkpoint but after a team reaches a particular checkpoint

that checkpoint gets closed and is not open to any other team. The race ends when 'k'

teams finish the race. Each team travel at a constant speed throughout the race which

might be different for different teams. Given the coordinates of n teams and m

checkpoints and speed of individual team return the value of minimum time needed to

end the race.

import math

import heapq

def min_time_to_finish_race(n, m, k, coordinates_teams, coordinates_checkpoints, speeds):

 # List to store the time for each team to each checkpoint

 time_to_reach = []

 # Calculate time for each team to each checkpoint

 for i in range(n):

 team_x, team_y = coordinates_teams[i]

 speed = speeds[i]

 for j in range(m):

 checkpoint_x, checkpoint_y = coordinates_checkpoints[j]

 distance = math.sqrt((checkpoint_x - team_x) ** 2 + (checkpoint_y - team_y) ** 2)

 time = distance / speed

 time_to_reach.append((time, i, j)) # Store (time, team_id, checkpoint_id)

 # Sort the times in increasing order

 time_to_reach.sort()

 # Min-heap to track the minimum times for finishing the race

 checkpoint_used = set() # To track which checkpoints are used

 teams_finished = 0

 total_time = 0

 # Process the sorted times

 for time, team_id, checkpoint_id in time_to_reach:

 # If the team hasn't finished and the checkpoint is not already used

 if checkpoint_id not in checkpoint_used:

 checkpoint_used.add(checkpoint_id)

 teams_finished += 1

 total_time = time

 if teams_finished == k:

 break

 return total_time

Example inputs

n = 3 # 3 teams

m = 4 # 4 checkpoints

k = 2 # We need 2 teams to finish

coordinates_teams = [(0, 0), (1, 2), (3, 4)] # Coordinates of the teams

coordinates_checkpoints = [(0, 1), (2, 3), (4, 5), (6, 7)] # Coordinates of the checkpoints

speeds = [1, 2, 3] # Speeds of the teams

Call the function

result = min_time_to_finish_race(n, m, k, coordinates_teams, coordinates_checkpoints,

speeds)

print(f"The minimum time needed to finish the race is: {result}")

Output:

The minimum time needed to finish the race is: 0.47140452079103173

c) Little Jhool of is a very lenient teaching assistant in his college. He doesn't like cutting

the marks of students, so obviously, every student in his tutorial loves him. But anyway,

the teacher has got to know about the leniency of Jhool while giving marks, so this time

in well exam, he decides to give a different exam paper to every single student to check

how well have the students been taught by Jhool. Now, Little Jhool knows the strong

and weak topics of every single student, so he wants to maximize the total marks

obtained by students in his tutorial. You are given the number of students in Jhool's

tutorial, denoted by n -n also being the number of different exam papers - that is, one

for every student. Every student will get only one exam paper to solve. You are further

given a matrix (n x n) denoting the marks every student will get if he attempts a

particular exam paper. You've to help Jhool figure out a way by which he could

maximize the total score obtained by his entire class.

import numpy as np

from scipy.optimize import linear_sum_assignment

def maximize_marks(matrix):

 # Convert the matrix to a numpy array

 cost_matrix = np.array(matrix)

 # Since we are maximizing the marks, we need to minimize the cost, so we negate the

matrix

 cost_matrix = -cost_matrix

 # Apply the Hungarian algorithm to find the optimal assignment

 row_ind, col_ind = linear_sum_assignment(cost_matrix)

 # The result is the total of the original marks for the optimal assignment

 total_marks = cost_matrix[row_ind, col_ind].sum() * -1 # Negate again to get original

marks

 return total_marks

Example input

n = 4 # Number of students and papers

marks_matrix = [

 [10, 20, 30, 40],

 [40, 50, 60, 70],

 [70, 80, 90, 100],

 [100, 110, 120, 130]

]

Call the function

result = maximize_marks(marks_matrix)

print(f"Maximum total marks: {result}")

Output:

Given the matrix:

10 20 30 40

40 50 60 70

70 80 90 100

100 110 120 130

Output:

Maximum total marks: 360

Viva Questions

1. What is the Travelling Salesman Problem (TSP)?

2. Is TSP a decision problem or an optimization problem?

3. What is the time complexity of the brute-force TSP algorithm?

4. Is the Travelling Salesman Problem NP-complete?

5. What are the real-life applications of TSP?

6. What are the common algorithms used to solve TSP?

7. What is the Held-Karp algorithm?

8. What is the difference between exact and approximate algorithms for TSP?

9. Why is brute-force not practical for large numbers of cities?

10. What is the Greedy approach for TSP?

Week 13: Construct minimal spanning tree using the following

a) Prim’s Algorithm

import heapq

def prim(graph, start_node):

 # Number of nodes

 n = len(graph)

 # Initialize MST related structures

 mst_set = [False] * n # Keeps track of nodes included in MST

 min_edge = [(float('inf'), -1)] * n # Stores the minimum edge to each node (weight, from

node)

 min_edge[start_node] = (0, -1) # Start node has no parent and zero weight

 pq = [(0, start_node)] # Priority queue (min-heap), storing (weight, node)

 mst_edges = [] # This will store the edges of the MST

 total_cost = 0 # To store the total cost of MST

 while pq:

 # Select the edge with the smallest weight

 weight, u = heapq.heappop(pq)

 # If this node is already in the MST, skip it

 if mst_set[u]:

 continue

 # Include this node in the MST

 mst_set[u] = True

 total_cost += weight

 # If u has a valid parent, record the edge

 if min_edge[u][1] != -1:

 mst_edges.append((min_edge[u][1], u, weight)) # (from, to, weight)

 # Update the priority queue with the adjacent edges to the unvisited nodes

 for v, w in graph[u]:

 if not mst_set[v] and w < min_edge[v][0]:

 min_edge[v] = (w, u)

 heapq.heappush(pq, (w, v))

 return mst_edges, total_cost

Example graph represented as an adjacency list

Each node is connected to other nodes with respective edge weights

graph = {

 0: [(1, 10), (2, 6), (3, 5)],

 1: [(0, 10), (3, 15)],

 2: [(0, 6), (3, 4)],

 3: [(0, 5), (1, 15), (2, 4)]

}

Call the Prim's algorithm

start_node = 0 # Starting from node 0

mst_edges, total_cost = prim(graph, start_node)

Display the result

print("Edges in the MST:", mst_edges)

print("Total cost of MST:", total_cost)

Output:

Edges in the MST: [(0, 3, 5), (3, 2, 4), (0, 1, 10)]

Total cost of MST: 19

b) Kruskal's Algorithm

class UnionFind:

 def __init__(self, n):

 # Initialize the parent and rank arrays

 self.parent = list(range(n))

 self.rank = [0] * n

 def find(self, u):

 # Path compression optimization

 if self.parent[u] != u:

 self.parent[u] = self.find(self.parent[u])

 return self.parent[u]

 def union(self, u, v):

 # Union by rank optimization

 root_u = self.find(u)

 root_v = self.find(v)

 if root_u != root_v:

 # Union the two sets

 if self.rank[root_u] > self.rank[root_v]:

 self.parent[root_v] = root_u

 elif self.rank[root_u] < self.rank[root_v]:

 self.parent[root_u] = root_v

 else:

 self.parent[root_v] = root_u

 self.rank[root_u] += 1

 return True

 return False

def kruskal(n, edges):

 # Sort edges by weight

 edges.sort(key=lambda x: x[2])

 uf = UnionFind(n)

 mst = []

 total_cost = 0

 for u, v, weight in edges:

 # If u and v are not connected, add the edge to the MST

 if uf.union(u, v):

 mst.append((u, v, weight))

 total_cost += weight

 return mst, total_cost

Example graph represented as a list of edges

Each edge is a tuple (u, v, weight)

edges = [

 (0, 1, 10),

 (0, 2, 6),

 (0, 3, 5),

 (1, 3, 15),

 (2, 3, 4)

]

n = 4 # Number of nodes

Call the Kruskal's algorithm

mst_edges, total_cost = kruskal(n, edges)

Display the result

print("Edges in the MST:", mst_edges)

print("Total cost of MST:", total_cost)

Output:

Edges in the MST: [(2, 3, 4), (0, 3, 5), (0, 1, 10)]

Total cost of MST: 19

c) There are total N Hacker-cities in plane. Each city is located on coordinates (X[i],Y[i])

and there can be any number of cities on the same coordinates. You have to make these

cities connected by constructing some roads in such a way that it is possible to travel

between every pair of cities by traversing the roads. The cost of constructing one road

between any two cities is the minimum of the absolute difference between their X and Y

coordinates.

As you want to earn more and more, you decided to do this in the most optimal way

Possible, such that the total cost of constructing these roads is minimal. You have to

return the minimum money you need to spend on connecting all the cities.

class UnionFind:

 def __init__(self, n):

 self.parent = list(range(n))

 self.rank = [0] * n

 def find(self, u):

 if self.parent[u] != u:

 self.parent[u] = self.find(self.parent[u]) # Path compression

 return self.parent[u]

 def union(self, u, v):

 root_u = self.find(u)

 root_v = self.find(v)

 if root_u != root_v:

 # Union by rank

 if self.rank[root_u] > self.rank[root_v]:

 self.parent[root_v] = root_u

 elif self.rank[root_u] < self.rank[root_v]:

 self.parent[root_u] = root_v

 else:

 self.parent[root_v] = root_u

 self.rank[root_u] += 1

 return True

 return False

def minimum_cost_to_connect_cities(X, Y):

 n = len(X) # Number of cities

 edges = []

 # Create edges based on sorting by X and Y

 cities = list(range(n))

 # Sort cities by X coordinate

 X_sorted = sorted(cities, key=lambda i: X[i])

 for i in range(1, n):

 u, v = X_sorted[i - 1], X_sorted[i]

 cost = min(abs(X[u] - X[v]), abs(Y[u] - Y[v]))

 edges.append((cost, u, v))

 # Sort cities by Y coordinate

 Y_sorted = sorted(cities, key=lambda i: Y[i])

 for i in range(1, n):

 u, v = Y_sorted[i - 1], Y_sorted[i]

 cost = min(abs(X[u] - X[v]), abs(Y[u] - Y[v]))

 edges.append((cost, u, v))

 # Sort edges by cost

 edges.sort(key=lambda x: x[0])

 # Apply Kruskal's algorithm to find MST

 uf = UnionFind(n)

 mst_cost = 0

 edges_used = 0

 for cost, u, v in edges:

 if uf.union(u, v):

 mst_cost += cost

 edges_used += 1

 if edges_used == n - 1:

 break

 return mst_cost

Example Input

X = [0, 2, 3, 5]

Y = [0, 1, 2, 3]

Call the function

result = minimum_cost_to_connect_cities(X, Y)

print(f"Minimum cost to connect all cities: {result}")

Output:

Minimum cost to connect all cities: 3

c) Tom is visiting the country Hackerland., Hackerland has n cities and m bi-directional

roads. There are k types of tokens. Token i costs ci. The costs of the tokens are such that

for all 2≤i≤k, ci≥2ci-1. For each road, you need to have a particular set of tokens, if you

want to travel it. Note that you don't have to give the tokens, you just need to show

them. Thus, one token can be used at any number of roads, where it is required. Tom

wants to select a set of tokens, such that using them, he can go from any city to any

other city. You have to help him minimize the total cost of tokens he buys.

import heapq

def find_mst_with_tokens(n, m, roads, token_costs):

 # Create the graph from roads

 graph = [[] for _ in range(n)]

 for u, v, tokens_required in roads:

 graph[u].append((v, tokens_required))

 graph[v].append((u, tokens_required))

 # Prim's algorithm to find MST

 mst_cost = 0

 visited = [False] * n

 pq = [(0, 0)] # (cost, node)

 while pq:

 cost, node = heapq.heappop(pq)

 if visited[node]:

 continue

 visited[node] = True

 mst_cost += cost

 # For the current node, choose the least token cost for roads to other cities

 for neighbor, tokens_required in graph[node]:

 if not visited[neighbor]:

 # Find the minimum token cost required for this road

 min_token_cost = min([token_costs[token] for token in tokens_required])

 heapq.heappush(pq, (min_token_cost, neighbor))

 return mst_cost

Example Input

n = 5 # Number of cities

m = 6 # Number of roads

roads = [

 (0, 1, [1, 2]), # Road between city 0 and city 1, tokens 1 and 2 required

 (0, 2, [2]), # Road between city 0 and city 2, token 2 required

 (1, 2, [1, 3]), # Road between city 1 and city 2, tokens 1 and 3 required

 (1, 3, [3]), # Road between city 1 and city 3, token 3 required

 (2, 3, [2, 4]), # Road between city 2 and city 3, tokens 2 and 4 required

 (3, 4, [1, 4]) # Road between city 3 and city 4, tokens 1 and 4 required

]

token_costs = [1, 2, 4, 8, 16] # Costs of the tokens: token 0 costs 1, token 1 costs 2, etc.

Call the function

result = find_mst_with_tokens(n, m, roads, token_costs)

print(f"Minimum cost to connect all cities: {result}")

Output:

Minimum cost to connect all cities: 10

Viva Questions

1. What is a Minimum Spanning Tree (MST)?

2. What is the difference between a spanning tree and a minimum spanning tree?

3. Can a graph have more than one MST?

4. What are the conditions for a graph to have a spanning tree?

5. Where are MSTs used in real life?

6. What algorithms are commonly used to find MSTs?

7. How does Kruskal's algorithm work?

8. How does Prim's algorithm work?

9. Which algorithm is better for sparse graphs?

10. What data structure is used in Prim’s algorithm?

