

1.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.Tech I Sem Supply Examination, December 2021 BASIC ELECTRICAL ENGINEERING (EEE, CSE & IT)

Time: 3 Hours.

Max. Marks: 70

Note: 1. This question paper contains two parts A and B.

- 2. Part- A is Compulsory. Answer all Questions which carries 20 marks.
- 3. Part B consists 5 units. Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks=20Marks)

a)	Define Active element and give example.	2M	CO1	BL1
b)	State Kirchhoff's of current law.	2M	CO1	BL1
c)	What is the phase angle between voltage and current in pure inductor?	2M	CO2	BL3
d)	Define resonance. What is the condition for series resonance?	2M	CO2	BL1
e)	What are the losses in transformer?	2M	CO3	BL1
f)	Write different connections of three phase transformers.	2M	CO3	BL2
g)	Draw torque slip characteristic of three phase induction motor.	2M	CO4	BL1
h)	What are the applications of single phase induction motor?	2M	CO4	BL2
i)	Define Earthing.	2M	CO5	BL1
j)	What are the types of cables?	2M	CO5	BL2

PART - B

(5*10 Marks=50Marks)

UNIT-I

Find the power loss in 1Ω resistor shown in figure

Using Thevenin theorem find Io for circuit shown below

Derive the expression for current flowing through first order RL circuit BL3 CO₂ 5M 3 for DC excitation. Using Norton theorem find Io for circuit shown below 3ΚΩ 6ΚΩ BL3 CO₂ 5M b) $3K\Omega$ 2ΚΩ 2mA **UNIT-II** Find the Average value of the periodic waveform shown in below figure V BL3 5M CO2 a) 50 V A series circuit consisting of a10Ω resister, 100μF capacitor and a 10 mH inductor is driven by 50Hz a.c voltage source of maximum b) value 100 volts. Calculate the equivalent impedance, current in the BL3 CO₂ 5M circuit, power factor and power dissipated in the OR Determine RMS value of the wave form shown in below figure BL3 CO₂ 5M 5 a) 5π 3π 2π The impedances of parallel circuit are Z_1 =(8+j10) & Z_2 =(10-j12).If the applied voltage is 120V, find BL3 CO₂ 5M Current & power of each branch. i. b) Overall current & power factor of the combination ii. **UNIT-III** BL₂ 10M CO₂ Explain operation of single phase ideal transformer. OR BL1 CO₂ 5M Describe working of Auto transformer. 7 Draw the equivalent circuit of transformer and explain the significance BL1 CO₂ 5M b) of each term in it. **UNIT-IV** BL₂ Explain Construction and working of synchronous generators. CO3 10M 8

Describe star delta method of starting of a squirrel cage three phase

induction motor.

BL1

CO3

5M

	b)	Discuss how to control the speed of separately excited dc motor below the rated speed.	5M	CO3	BL1				
		UNIT-V							
10	a)	Explain working principle of MCB.	5M	CO4	BL2				
	b)	What are the types of Batteries? Discuss Important Characteristics for Batteries.	5M	CO4	BL2				
	OR								
11	a)	Explain working principle of ELCB.	5M	CO4	BL2				
	b)	Describe Elementary calculations for energy consumption.	5M	CO4	BL2				

