1. ## MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT (AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956 # I B.Tech I Sem Supply Examination, December 2021 BASIC ELECTRICAL ENGINEERING (EEE, CSE & IT) Time: 3 Hours. Max. Marks: 70 Note: 1. This question paper contains two parts A and B. - 2. Part- A is Compulsory. Answer all Questions which carries 20 marks. - 3. Part B consists 5 units. Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions. #### PART- A (10*2 Marks=20Marks) | a) | Define Active element and give example. | 2M | CO1 | BL1 | |----|---|----|-----|-----| | b) | State Kirchhoff's of current law. | 2M | CO1 | BL1 | | c) | What is the phase angle between voltage and current in pure inductor? | 2M | CO2 | BL3 | | d) | Define resonance. What is the condition for series resonance? | 2M | CO2 | BL1 | | e) | What are the losses in transformer? | 2M | CO3 | BL1 | | f) | Write different connections of three phase transformers. | 2M | CO3 | BL2 | | g) | Draw torque slip characteristic of three phase induction motor. | 2M | CO4 | BL1 | | h) | What are the applications of single phase induction motor? | 2M | CO4 | BL2 | | i) | Define Earthing. | 2M | CO5 | BL1 | | j) | What are the types of cables? | 2M | CO5 | BL2 | ### PART - B (5*10 Marks=50Marks) #### **UNIT-I** Find the power loss in 1Ω resistor shown in figure Using Thevenin theorem find Io for circuit shown below Derive the expression for current flowing through first order RL circuit BL3 CO₂ 5M 3 for DC excitation. Using Norton theorem find Io for circuit shown below 3ΚΩ 6ΚΩ BL3 CO₂ 5M b) $3K\Omega$ 2ΚΩ 2mA **UNIT-II** Find the Average value of the periodic waveform shown in below figure V BL3 5M CO2 a) 50 V A series circuit consisting of a10Ω resister, 100μF capacitor and a 10 mH inductor is driven by 50Hz a.c voltage source of maximum b) value 100 volts. Calculate the equivalent impedance, current in the BL3 CO₂ 5M circuit, power factor and power dissipated in the OR Determine RMS value of the wave form shown in below figure BL3 CO₂ 5M 5 a) 5π 3π 2π The impedances of parallel circuit are Z_1 =(8+j10) & Z_2 =(10-j12).If the applied voltage is 120V, find BL3 CO₂ 5M Current & power of each branch. i. b) Overall current & power factor of the combination ii. **UNIT-III** BL₂ 10M CO₂ Explain operation of single phase ideal transformer. OR BL1 CO₂ 5M Describe working of Auto transformer. 7 Draw the equivalent circuit of transformer and explain the significance BL1 CO₂ 5M b) of each term in it. **UNIT-IV** BL₂ Explain Construction and working of synchronous generators. CO3 10M 8 Describe star delta method of starting of a squirrel cage three phase induction motor. BL1 CO3 5M | | b) | Discuss how to control the speed of separately excited dc motor below the rated speed. | 5M | CO3 | BL1 | | | | | |----|----|--|----|-----|-----|--|--|--|--| | | | UNIT-V | | | | | | | | | 10 | a) | Explain working principle of MCB. | 5M | CO4 | BL2 | | | | | | | b) | What are the types of Batteries? Discuss Important Characteristics for Batteries. | 5M | CO4 | BL2 | | | | | | | OR | | | | | | | | | | 11 | a) | Explain working principle of ELCB. | 5M | CO4 | BL2 | | | | | | | b) | Describe Elementary calculations for energy consumption. | 5M | CO4 | BL2 | | | | |