

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.Tech I Sem Supply End Examination, April 2022 Chemistry (EEE, CSE, IT)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit.

 Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

(10*5 Marks = 50 Marks)								
		PART- B						
	j)	What causes a chemical shift in NMR Spectroscopy?	2M	CO5	BL1			
	i)	Write the selection rules of Vibrational rotational spectra.	2M	CO5	BL1			
	h)	Predict the products $1.CH_3-CH=CH_2HBr\rightarrow$ $2.CH_3-CH=CH_2$ HBr/R-O-O-R>	2M	CO4	BL1			
	g)	Explain Enantiomers and Disastereomers with an example each.	2M	CO4	BL2			
	f)	What is galvanic and pitting corrosion?	2M	CO3	BL1			
	e)	Define the terms Single electrode potential and Standard electrode potential.	2M	CO3	BL2			
	d)	Illustrate the characteristics of potable water.	2M	CO2	BL1			
	c)	Calculate the hardness of a sample of water having the following composition Ca(HCo ₃) ₂ =243 mg/litre, MgSo ₄ =240 mg/litre, mol.wt 162 and 120 respectively.	2M	CO2	BL2			
	b)	Explain the effect of doping on conductance.	2M	CO1	BL1			
1.	a)	Define LCAO (Linear combination of Atomic orbital)	2M	CO1	BL1			

(10*5 Marks = 50 Marks)

2	Explain in detail Molecular orbital energy level diagram of N_2 molecule.	10M	CO1	BL4
	OR			
3	Explain the π molecular orbital of benzene.	10M	CO1	BL4
4	Describe briefly the desalination of water by Reverse Osmosis method.	10M	CO2	BL4
	OR			
5	Discuss briefly the softening of hard water by Ion exchange process.	10M	CO2	BL2

Course Code: 1910005 Roll No:		MLRS-R19		
6	What is Cathodic protection? Explain briefly about sacrificial anodic method.	10M	CO3	BL2
	OR			
7	Discuss the various factors affecting rate of corrosion.	10M	CO3	BL2
8	Explain the mechanism of SN¹ and SN² reaction with suitable examples.	10M	C04	BL6
	OR			
9	Write the structure, synthesis and pharmaceutical applications of paracetomal	10M	CO4	BL2
10	Write the selection rules & applications of Vibrational rotational spectra in detail.	10M	CO5	BL6
	OR			
11	Explain about MRI (Magnetic Resonance Imaging)	10M	CO5	BL2

---00000---