Final

Course Code: 1910003

MLRITM R19

MARRI LAXMAN REDDY

Institute of Technology and Management

(An Autonomous Institution)

Dundigal, Medchal Dist. Hyderabad - 500043, Telangana.

I B.Tech I Sem Regular Examination, Dec 2019/Jan 2020

APPLIED PHYSICS (ECE)

Max. Marks: 70 Time: 3 Hours.

Note: 1. This question paper contains two parts A and B.

2. Part- A is Compulsory. Answer all Questions which carries 20 marks.

3. Part - B consists 5 units. Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

 $(10 \times 2 \text{ Marks} = 20 \text{ Marks})$

1.	a)	Describe the spectral distribution of a black body.	2 M
1.	b)	What is the physical significance of wave function?	2 M
	c)	What are intrinsic and extrinsic semi-conductors?	2 M
	d)	Explain Zener breakdown.	2 M
	, e)	Explain how a solar cell works?	2 M
	f)	What is radiative recombination in semiconductors?	2 M
	, g)	What are the conditions to achieve Laser action?	2 M
	h)	Explain the basic principle involved in light propagation through optical	2 M
		fiber. State and explain Ampere's law.	2 M
	i)	What is hysteresis?	2 M
	j)	Wilat is hystereoic.	

PART - B

 $(5 \times 10 \text{ Marks} = 50 \text{ Marks})$

2	a)	Derive Schrodinger's time independent wave equation.	5 M
_		Show that the energy of particle in a potential box is quantized?	5 M
	•	OR	
3	a)	Write the postulates of Planck's Quantum theory and derive Planck's radiation formula.	5 M
	b)	Explain the de-Broglie hypothesis and derive an expression is	5 M

K. K. Ashok)

_	a) Francisco						
٦	a	generation and recombination.	5 M					
	b	Explain how the Fermi energy level changes with increasing amounts of impurity in p-type and n-type semiconductors?	5 M					
		OR						
5	,	expressions for them.	5 M					
	b)	with neat energy band diagrams.	5 M					
6	a)	Explain the construction and working of LED. What are the advantages and disadvantages of LEDs in electronic display?	10 M					
	OR							
7	a)	Describe the working principle of semiconductor lasers. What are the materials used in semiconductor lasers?	5 M					
	b)	Write a note on Avalanche Photo Diode. Review the parameters that are commonly used to assess the performance of a detector.	5 M					
8	a)	What are the various pumping methods? Describe the construction and working of a ruby laser with a neat sketch.	10 M					
		OR						
9		What are step index and graded index fibres? Write the losses associated with fibres.	5 M					
	,	Explain how fibre can be used a dielectric wave guide? Calculate the numerical aperture and acceptance angle of a fibre having fractional refractive index of 0.05 and core refractive index of 1.48.	5 M					
10	_ \							
10	a)	Write the Maxwell's equations in differential and integral forms.	5 M					
	b)	Derive Clausius-Mossotti equation.	5 M					
OR								
11	a)	Explain the classification of magnetic materials.	5 M					
	b)	Write a note on ferroelectric and piezoelectric materials.	5 M					

---00000---

K. XId 12020 CDr. K. Ashok.)