

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.TECH II Sem Supplementary Examination, September-2022 Engineering Mechanics (CIVIL, MECH)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	State Lami's theorem with a sketch.	2M	CO1	BL2
	b)	Distinguish between units and dimensions with examples.	2M	CO1	BL4
	c)	Define cone of friction.	2M	CO2	BL1
	d)	Differentiate between centroid and center of gravity.	2M	CO2	BL2
	e)	Define polar moment of inertia	2M	CO3	BL1
	f)	State parallel axis theorem	2M	CO3	BL2
	g)	Illustrate rectilinear motion with examples.	2M	CO4	BL2
	h)	The motion of a particle in rectilinear motion is defined by the relation $s = 3x^3 - 9x^2 + 8x - 10$ where s is expressed in meters and x in seconds. Find the acceleration of the particle when the velocity is	2M	CO4	BL3
		zero.			
	i)	State D'Alemberts principle.	2M	CO5	BL2
	j)	What is the work-energy principle	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Classify the various kinds of systems of forces with illustrative	5M	CO1	BL2
		sketches.			
	b)	Determine the resultant of the force system shown in the figure	5M	CO1	RI 5

3	a)	Two forces of magnitude 50 KN and 80 KN are acting on a particle, such that the angle between the two is 135°. If both forces are acting away from the particle, calculate the resultant and find its direction.	5M	C01	BL3
	b)	Distinguish the moment and a couple with reference to their characteristics.	5M	CO1	BL4
4	a) b)	Explain the concept of the cone of friction. Define the following terms	5M 5M	CO2 CO2	BL5 BL2
		i) Wedge friction ii) Screw friction iii) Belt friction			
		OR			
5	a)	A 100N uniform rod AB is held in the position as shown in the figure. If the coefficient of friction is 0.2 at A and B. Calculate the range of values of P for which equilibrium is maintained.	5M	CO2	BL3
		P B B			
		100 N			
		16 cm			
	b)	Derive the centroid of the trapezium shown in the figure.	5M	CO2	BL5
		h x			
6	a)	A circle of diameter 120mm is placed above axis AB in such a way that its center is 250mm above the axis AB as shown in the figure. Using the parallel axis theorem, determine the moment of inertia about the axis A-B.	5M	C03	BL2
		x			
	h)	Determine the mass moment of incution of a called sub-out of realists D	EM	CO2	DIF
	b)	Determine the mass moment of inertia of a solid sphere of radius R about its diametric axis.	5M	CO3	BL5
		OR			
7	a)	Derive the mass moment of inertia of the rectangular plate about a	5M	CO3	BL3
	b)	line passing through the base. State the theorem of the perpendicular axis. How will you prove this	5M	CO3	BL2
		theorem?			

8	a)	State and explain all principles of dynamics.	5M	CO4	BL1
	b)	A particle moves along a straight line. Its motion is represented by the equation $S = 16t + 4t^2 - 3t^3$	5M	C04	BL5
		Where S is in meters and t, is in seconds. Determine			
		 Displacement, velocity, and acceleration 2 seconds after 			
		ii. Displacement and acceleration when velocity is zero and			
		iii. Displacement and velocity when acceleration is zero.			
		OR			
9	a)	Derive the impulse-Momentum equation of a body in motion	5M	CO4	BL6
	b)	A stone is thrown upwards from the top of a tower 70 m in height	5M	CO4	BL3
		with a velocity of 19.2 m/s. Determine its position and velocity			
		when t = 6 seconds.			
10	2)	Derive Work-energy equation	5M	CO5	BL3
10	b)	A man weighing W Newton entered a lift that moves with an	5M	CO5	BL4
	Uj	acceleration of "a" m/s^2 . Find the force exerted by the man on the	51-1	000	ВЦТ
		floor of the lift when:			
		i) lift is moving upwards			
		ii) lift is moving downwards OR			
	,		r M	COF	DI 4
11	a)	A homogeneous sphere with a radius of r=100 mm and weight W=100 N can rotate freely about a diameter. If it starts from rest	5M	CO5	BL4
		and gains, with constant angular acceleration, an angular speed n=180rpm, in 12 revolutions, find the acting moment.			
	b)	A bullet of 25 g mass is fired with a speed of 400 m/s. What is its	5M	CO5	BL3
	•	kinetic energy? If the bullet can penetrate 20 cm in a block of wood, what is the average resistance of the wood?			

---00000----

CO: Course Outcome

BL - Blooms Taxonomy Levels