

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.Tech II Sem Supply End Examination, May 2022

Mathematics -II (Common to all branches)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Solve: $xdy + ydx = 0$.	2M	CO1	BL3
	b)	State the necessary condition for the differential equation $Mdx + Ndy$ to be exact.	2M	CO1	BL1
	c)	Find the particular solution of $(D^2 + D + 6)y = 0$.	2M	CO2	BL3
	d)	Solve: $(D^2 - 5D + 6)y = 0$.	2M	CO2	BL3
	e)	Define volume integral.	2M	CO3	BL1
	f)	Evaluate $\int_{00}^{11} \int_{0}^{1} y^2 dy dx.$	2M	CO3	BL5
	g)	Define curl of a vector field.	2M	CO4	BL1
	h)	If $r = xi + yj + zk$ then find $div r$.	2M	CO4	BL3
	i)	If S is any closed surface enclosing a volume V and $F = axi + byj + czk$, then find curl F.	2M	C05	BL3
	j)	Define greens theorem.	2M	C05	BL1

PART-B

(10*5 Marks = 50 Marks)

2	Solve the differential equation $\frac{dy}{dx} + \frac{2}{x}y = x^2y^2$.	10M	CO1	BL3	
	OR				
3	A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the	10M	CO1	BL3	
	temperature of the air being 40° C. What will be the temperature of the body after 40 minutes from the original?				

4 Solve:
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{2x}$$
 10M CO2

OR

Solve
$$(D^2 - 4D + 4)y = e^{2x} + 3$$
.

BL3

Course Code: 1920002

Roll No:

MLRS-R19

Using double integration, Find the area lying between the parabola 10M CO3 BL3 $y = 4x - x^2$ and the straight line y = x.

OR

Solve:
$$x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x$$

Find the directional derivative of $\phi = xy + yz + zx$ at (1,1,1) in the 10M CO4 BL3 direction towards the point (2,-1,3).

OR

A fluid motion is given by
$$\overline{f} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$$
. 10M CO4 BL3 Is this motion irrotational? If so find the scalar potential.

Evaluate
$$\int_{S} \overline{F} \, \hat{n} \, ds$$
 where $\overline{F} = yzi + xzj + xyk$ and S is the portion of the sphere $x^2 + y^2 + z^2 = 1$ which is in the first octant.

OR

Verify Gauss Divergence theorem for
$$\overline{f} = (x^3 - yz)i - 2x^2yj + zk$$
 10M CO5 BL3 taken over the surface of the cube bounded by the planes $x=y=z=a$ and coordinate planes.

---00000---