Course Code: 1920002

Roll No:

MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.TECH II Sem Supplementary Examination, November-2021

MATHEMATICS – II (CE, CSE, ECE, EEE, IT, MECH)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	State the necessary condition for the differential equation $Mdx + Ndy = 0$ to be exact.	2M	CO1	R
	b)	Solve: $xdy + ydx = 0$.	2M	CO1	U
	c)	Solve: $(D^2 - 5D + 6)y = 0$.	2M	CO2	R
	d)	Find the particular solution of $(D^2 + D + 6)y = e^{2x}$.	2M	CO2	R
	e)	Evaluate $\int_{00}^{11} \int y^2 dy dx.$	2M	CO3	R
	f)	Define the centre of gravity.	2M	CO3	R
	g)	If $r = xi + yj + zk$ then find $div r$.	2M	CO4	R
	h)	Show that $\operatorname{Curl} \operatorname{grad} \phi = 0$ where ϕ is a scalar point function.	2M	CO4	Ap
	i)	Evaluate $\oint_C xy^2 dx + x^2 y dy$ around a circle $x^2 + y^2 = a^2$.	2M	CO5	R
	j)	State Stoke's theorem.	2M	CO5	R

PART-B

(10*5 Marks = 50 Marks)

2	a)	Solve: $(x^2-ay)dx=(ax-y^2)dy$.	5M	CO1	U	
	b)	Solve: $(y-px)(p-1) = p+1$.	5M	CO1	U	
		OR				
3		Solve: $\left(x + 2y^3\right) \frac{dy}{dx} = y$.	10M	CO1	Ap	

4 a) Solve:
$$(D^2-2D+1)y=e^x$$
. 5M CO2 U

b) Solve: $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = cos(log x)$. 5M CO2 U

OR

5 Solve: $(D^2+4)y = \tan 2x$ by the method of variation of parameters. 10M CO2 Ap

6 a) By changing the order of integration, evaluate $\int_0^1 \int_x^1 y^2 dy dx$. 5M CO3 Ap

b) Evaluate $\int_0^5 \int_x^2 x(x^2+y^2) dx dy$ 5M CO3 Ap

OR

Using double integration, Find the areal lying between the parabolas $y = 4x - x^2$ and the straight line $y = x$. 10M CO3 U

8 a) Find the directional derivative of $f = xy + yz + xz$ in the direction of vector $i+2j+2k$ at the point $(1,2,0)$. b) Evaluate $div(grad(r^n))$, where $r = |r|$ and $r = xi + yj + zk$. 5M CO4 U

OR

9 A fluid motion is given by $f = (6xy + z^2)i + (3x^2 - z)j + (3xz^2 - y)k$. 10M CO4 Ap

10 a) Applying Green's theorem evaluate $\oint_C (y - \sin x) dx + \cos x dy$ where c is the plane triangle enclosed by the lines $y = 0$, $x = \frac{\pi x}{2}$, $y = \frac{2x}{\pi}$. 5M CO5 U

Evaluate $\int_S F n ds$ where $F = yzi + xzj + xyk$ and S is the portion of the sphere $x^2 + y^2 + z^2 = 1$ which is in the first octant.

OR

Verify Gauss Divergence theorem for $f = (x^2 + y^2)^2 + z^2 + z^2$ and coordinate planes.