

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.Tech II Sem Supplementary Examination, September 2022

Mathematics - II

(Common to all branches)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1. a)	Solve $x dy - y dx = x y^2 dx$	2M	CO1	BL3
b)	Define exact differential equation	2M	CO1	BL3
c)	Solve $4y''' + 4y'' + y' = 0$	2M	CO2	BL3
d)	Find y_p , Where $(D^2+9)y = \cos 3x$	2M	CO2	BL1
e)	Evaluate $\int_{0}^{2} \int_{0}^{x} y dy dx$	2M	C03	BL5
f)	Evaluate $\iint_{0}^{1} \iint_{0}^{1} xyz dx dy dz$	2M	CO3	BL5
g)	Prove that $\nabla(\mathbf{r}^n) = n \mathbf{r}^{n-2} \mathbf{r}$	2M	CO4	BL5
h)	If $\overline{F} = (x+y+1)\overline{i} + \overline{j} - (x+y)\overline{k}$, then find \overline{F} . curl \overline{F}	2M	CO4	BL1
i)	If $\overline{F} = xy\overline{i} - z\overline{j} + x^2\overline{k}$ and C is the curve $x = t^2$, $y = 2t$, $z = t^3$ from to	2M	CO5	BL5
	$t = 0$ to $t = 1$. Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$			
j)	State Stoke's theorem.	2M	CO5	BL5

PART-B

(10*5 Marks = 50 Marks)

2 a) Solve
$$x^{2}y dx - (x^{3} + y^{3}) dy = 0$$
 5M CO1 BL3
b) Solve $\frac{dy}{dx} + \frac{y}{x} = y^{2}x \sin x$ 5M CO1 BL3

OR

If the temperature of a body is changing from 100°C to 70°C in 15 10M CO1 BL1 minutes, find when the temperature will be 40°C , if the temperature of air is 30°C . and also find out the temperature of the body after 30 min

4	Solve $(D^2-4D+4)y = 8x^2e^{2x} \sin 2x$.	10M	C02	BL3
	OR			
5	Solve $(D^2 + a^2)y = \tan ax$, by the method of variation of parameters.	10M	CO2	BL3
6	Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$ and hence evaluate	10M	CO3	BL5
	the double integral.			
	OR			
7	Find the area of the region bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.	10M	CO3	BL1
8 a)	Find the direction derivative of $x^2yz + 4xz^2$ at $(1,-2,-1)$ in the direction of $2\bar{i} - \bar{j} - 2\bar{k}$.	5M	CO4	BL1
b)	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	5M	CO4	BL1
	OR			
9	Show that the vector $(x^2 - yz)^{-1} + (y^2 - zx)^{-1} + (z^2 - xy)^{-1}$ is irrotational and find its scalar potential.	10M	CO4	BL5
10	Evaluate $\int_{S} \overline{F} \cdot \overline{n} dS$ where $\overline{F} = 18z \overline{i} - 12\overline{j} + 3y \overline{k}$ and S is the part of	10M	CO5	BL5
	the surface of the plane $2x + 3y + 6z = 12$ located in the first octant.			
	OR			
11	Verify Green's theorem in the plane for $\iint (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where c is the region bounded by	10M	CO5	BL5
	$y = \sqrt{x}$ and $y = x^2$.			
	y - y = x = x.			

---00000----

CO: Course Outcome

BL - Blooms Taxonomy Levels