Course Code: 1930403

Final. 29-10-29
Roll No:

MLRS- R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supply End Examination, October 2021

SIGNALS AND SYSTEMS

(ECE)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Define the orthogonal signal space and signal approximation using orthogonal functions	7M	CO1	BL1
	b)	Explain the analogy of vectors and signals in terms of orthogonality and evaluation of constant	7M	CO1	BL 1
2	a)	Prove that the complex exponential signals are orthogonal functions $x(t)=e^{jnwt}$ and $y(t)=e^{jmwt}$ let the interval be $(t0,t0+T)$	7M	CO1	BL 2
	b)	Explain the operations on signals, time delay/advance, time folding and time scaling.	7M	CO1	BL 1
3	,	Determine the Fourier Transform of standard signals Unit Impulse function,			
	a)	Signum function and Unit Step function	7M	CO2	BL 2
	b)	Find the exponential Fourier series of the signal $x(t) = 5\cos 5t + 10\sin 15t$.	7M	CO2	BL 2
4		What is the everall impulse vegpense h(n) when two custom with impulse			
	a)	What is the overall impulse response $h(n)$ when two system with impulse response $h_1(n)$ and $h_2(n)$ are connected in parallel and in series?	7M	CO3	BL 3
	b)	Determine the convolution of the signals $X(n)=\{2,-1,3,2\}$ and $h(n)=\{1,-1,1,1\}$	7M	CO3	BL 3
5	a)	Describe about the Hilbert Transform and express its properties.	7M	C02	BL 4
	b)	Discuss the ideal filter characteristics of Low pass. Band pass and Band stop.	7M	C03	BL 3
	a)	Compute the Laplace transform of $x(t) = e^{-b t }$ for the cases of $b < 0$ and $b > 0$.	7M	CO4	BL 4
6		Determine the Z-transform and sketch the pole zero plot with the ROC for the			
	b)	following Signal: $x(n) = 0.5nu(n) - \frac{1}{3}nu(n)$.	7M	CO4	BL 4
7	a)	Derive relationship between z and Laplace Transform and describe about the stability.	7M	CO4	BL 4
	b)	Find the correlation of symmetrical gate pulse with amplitude and time duration '1' with itself.	7M	CO5	BL 3
8	a)	State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples.	7M	CO5	BL 1
	b)	Discuss and Prove Properties of auto correlation function.	7M	CO5	BL 2

