Find- 21-02-2122

Course Code: 1930411

Roll No:

MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supplementary Examination, February-2022 **Electronic Devices and Circuits**(ECE)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	With necessary waveforms, explain the operation of bridge rectifier.	7M	CO1	BL4
	b)	A sinusoidal voltage whose V_m =26V is applied to half-wave rectifier. The diode may be considered to be ideal and R_L =1.2 $K\Omega$ is connected as load. Find out peak value of current, RMS value of Current, DC value of current and Ripple factor.	7M	CO1	BL3
2	a)	Derive the expression for diffusion capacitance.	7M	CO1	BL6
	b)	Sketch the piecewise linear characteristics of a diode. What are the approximate cut-in voltages for silicon and germanium?	7M	C01	BL2
3	a)	Draw the self bias circuit and derive the stability factor for it along with explanation.	7M	CO2	BL6
	b)	Calculate the α_{dc} and β_{dc} for the given transistor for which $I_C=5mA$, $I_B=50\mu A$ and $I_{CO}=1\mu A$.	7M	CO2	BL3
4	a)	Tabulate the comparison of CB, CE and CC configuration with examples.	7M	CO2	BL2
•	b)	An NPN transistor if β =50 is used in common emitter circuit with V_{cc} =10V and R_c =2 k Ω . The bias is obtained by connecting 100 k Ω resistor from collector to base. Find the quiescent point and stability factor.	7M	CO2	BL3
5	a)	Draw the circuit diagram of SCR and explain its operation along with its characteristics.	7M	CO3	BL1
	b)	Define and explain the parameters trans-conductance g_m . Drain resistance r_d and amplification factor μ of a JFET. Establish a relation between them.	7M	CO3	BL4
6	a)	Explain the operation of FET. Derive an expression for pinch off voltage of a FET.	7M	CO3	BL4
	b)	What is tunneling phenomena? Explain the principle of operation of tunnel diode with its characteristics.	7M	C03	BL4
7	a)	Draw the Common emitter amplifier with Emitter resistor and explain its operation.	7M	CO4	BL2
	b)	Explain about CC amplifier and derive the expression for h parameters of the same. In addition, derive the expression for gain, input impedance and output impedance of CC amplifier.	7M	CO4	BL4
8		Briefly discuss about the construction, working and static drain characteristics of enhancement MOSFET?	14M	CO5	BL2