Final - 23.10.2021

Course Code: 1930411

Roll No:

MLRS-R19

MARRI LAXMAN REDDY Institute of technology and management

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supply End Examination, October 2021

Electronic Devices and Circuits (ECE)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	. a]	iii) Ripple factor iv) Transformer utilization factor	7M	CO1	BL1
	b)	v) Rectifier efficiency vi) Form factor vii) Peak factor What is a rectifier? How many types are there? Explain half wave rectifier?	7M	CO1	BL4
2	a)	Explain the operation of full wave rectifier and sketch different wave forms.	7M	CO1	BL4
	b)	·	7M	CO1	BL4
3	a)	with I/P & O/P V.I Characteristics.	7M	CO2	BL3
	b)	Why biasing a transistor? Explain collector to base bias circuit and Obtain expression for its stability factor.	7M	CO2	BL4
4	a)	Define FET parameters and show that $\mu = g_m R_d$.	7M	CO2	BL1
	b)	An N-channel JFET has $I_{DSS}=8$ mA and $V_P=-5$ V. Determine the minimum value of V_{DS} for pinch-off region and the drain current I_{DS} , for $V_{GS}=-2V$ in the pinch region.	7M	CO3	BL3;
5	a)	Explain self bias circuit and derive the expression for stability factor.	7M	CO3	BL4
	b)	Draw the circuit diagram of tunnel diode and its equivalent circuit and explain with half of energy level diagrams.	7M	CO3	BL1
6	a)	Derive the expression for voltage amplification (A _V) and current amplification (A _I) for CE amplifier.	7M	CO4	BL6
	b)	Sketch V-I. Characteristics of CE configuration and determine h-parameters.	7M	CO4	BL3
7	a)	For a CB amplifier driven by a voltage source of internal resistance R_S =1.2 $K\Omega$, the load resistance R_L =1.5 $K\Omega$, The h-parameters are h_{ib} =22 Ω , h_{rb} =3×10 ⁻⁴ , h_{fb} =-0.98 and h_{ob} =0.5 μ A/V. complete A_I , A_V , R_I and R_O .	7M	CO4	BL3
	b)	Sketch V-I. Characteristics of enhancement MOSFET and explain.	7M	CO5	BL4
8	b)	Derive the expression for A _V ,Z _I and Z ₀ of CG FET amplifier. In CG amplifier R _D =2K Ω Rs=1K Ω , g _m = 1.43×10 ⁻³ mho, and r _d = 30K Ω .Determine A _V , Z _I and Z ₀ .	7M 7M	CO5	BL6 BL3