Max. Marks: 70

14M CO5

BL1

Time: 2 Hours.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Supplementary Examination, February-2022 **Digital System Design**

(ECE)

Note: 1. Answer any FIVE questions. 2. Each question carries 14 marks and may have a, b as sub questions. Time: 3 Hours. Max. Marks: 70 Note: 1. Answer any FIVE questions. 2. Each question carries 14 marks and may have a, b as sub questions.					
1	a)	Convert (A0F9.0EB) ₁₆ to decimal, binary, octal.	7M	CO1	BL2
	b)	Simplify the following Boolean expressions using the Boolean theorems. (i) (A+B+C) (B'+C) + (A+D) (A'+C) (ii) (A+B) (A+B') (A'+B)	7M	CO1	BL1
2		Demonstrate all digital logic gates with truth table.	14M	CO1	BL2
3	a)	Minimize the following expression using K-map and realize using NAND Gates. F (A,B,C,D) = Σ m (0,1,2,9,11) +d(8,10,14,15).	7M	CO2	BL2
	b)	Design a combinational circuit by converting BCD code to Excess-3 Code.	7M	CO2	BL3
4		Realize the function $f(A,B,C,D)=\pi(1,4,6,10,14)+d(0,8,11,15)$ using: i) 16:1 MUX ii) 8:1 MUX.	14M	CO2	BL2
5	a)	Discuss about a D- Latch using NOR gates in detail, with a neat diagram.	7M	CO3	BL1
	b)	Convert an SR Flip-Flop into JK Flip-Flop.	7M	CO3	BL2
6		Design and explain Ring and Johnson counter.	14M	CO3	BL3
7	a)	What is the need of parity generator? Explain with an example.	7M	CO4	BL1
	b)	What are the Moore and Melay machines? Compare them.	7M	CO4	BL2

Write a short notes on CMOS logic families

8