Course Code: 1930413

Roll No:

MLRS-R19

CO5

BL3

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Supply End Examination, October 2021

DIGITAL SYSTEM DESIGN

(ECE)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Design a 3 bit and 4 bit Gray code from 2 bit gray code by reflection.	7M	CO1	BL
	b)	Convert the following: i) AF9.B0D to binary ii) 4796 to hexadecimal.	7M	CO1	BL
2	a)	Realize and draw the following expression using universal gates : A \odot B \odot C \odot D	7M	CO2	BL
	b)	Simplify the function $f(A, B, C,D) = A'B' + B'C' + A'D' + CD$	7M	CO2	BL
3	a)	Convert the following i) to min-terms: ABC+AB+DC+D' ii) to max terms: A(A'+B)C'	7M	CO2	BL
	b)	Implement the function $f(A,B,C,D)=\Sigma(0,1,4,6,8,9,10,12)$ using OR-NAND logic gates.	7M	CO3	BL
4	a)	What is Race around condition? How is it achieved in master-Slave Flip Flop?	7M	CO3	BL
	-	What are the excitation requirements of a flip-flop? Describe for JK and SR flip-flops.	7M	CO3	BL
5	a)	Design a 16:1 MUX using 4:1 MUXs	7M	C03	BL
	b)	Design an universal shift register of 3 bit using D Flip-Flops.	7M	CO3	BL
6	a)	Design a synchronous 3 bit counter using J K Flip-Flops.	7M	C04	BL
	b)	Describe the terms with respect to flop-flops i) Clock Skew ii) Propagation delay time	7M	CO4	BL
7	a)	Distinguish between i) asynchronous and synchronous sequential circuits, ii) Mealy and Moor FSM.	7M	.CO4	BLZ
	b)	With the help of a neat circuit diagram and truth table explain the working of DTL NAND gate.	7M	CO5	BLZ
8	a)	How are the two different IC families interfaced in a design, explain how CMOS logic driving TTL logic.	7M	CO5	BLZ
		dilying I i blogic.	714	COF	DIS

b) Analyze the characteristics of standard TTL NAND gate.

