

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Supplementary Examination, February-2022 **Probability Theory and Stochastic Processes**(ECE)

Time: 3 Hours.	Max. Marks: 70
N . 4 A BUILD	

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a) b)	Explain the concept of Baye's theorem and derive it from total probability. Definition of a Random Variable and explain the conditions for a function to be a Random Variable.	7M 7M	CO2	BL2
2		The probability density function of a random variable X is given by $f(x)=ae^{-b x }, -\infty < x < \infty$ Find i) Cumulative Distribution Function $F_X(x)$ ii) Derive the relationship between a and b .	14M	CO1	BL4
3	a) b)	Define mean of a Random Variable and state and prove any three properties of it. Explain the moments about the origin.	7M 7M	CO1	BL1 BL2
4	9	The Joint CDF of the random variables X and Y is given by $F_{X,Y}(x,y) = \begin{cases} (1-e^{-ax}) \left(1-e^{-by}\right) & x \geq 0, y \geq 0, a, b > 0 \\ 0 & \text{otherwise} \end{cases}$ i) Find Marginal CDFs of X and Y.	14M	C01	BL5
5	a)	State and prove the properties of autocorrelation function.	7M	CO3	BL1
	b)	Define a Random Process and explain about its classification.	7M	C03	BL2
6		Derive the relationship between output power spectral density and input power spectral density of an LTI System.	14M	CO2	BL5
7	a)	Derive the relationship between Power Spectrum and Autocorrelation Function of Random process. Find the cross power spectral density, if	7M	CO3	BL5
	b)	$R_{XY}(\tau) = \frac{A^2}{2} sin(\omega_o \tau)$	7M	CO3	BL5

8

---00000---