

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supplementary Examination, July-2022 **Probability Theory and Stochastic Processes** (ECE)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	,	State and Prove the total probability. Define Axiomatic Probability and Relative frequency probability. Also, list the axioms of probability.	7M 7M	C01 C01	BL3 BL1
2		If the probability density function of a random variable is given by $f_X(x) = C \exp\left(-\frac{x}{4}\right), 0 \le x \le 1$	14M	C01	BL3
		= 0 otherwise			
		Find the value of C such that the given $f_X(x)$ is a valid pdf and evaluate the $F_X(0.5)$.			
3	a)	If X be a random variable with pdf $f_X(x) = 1/8$, $-4 < x < 4$ then find Mean and Mean Square Values of X.	7M	C01	BL3
	b)	Define variance and explain any three properties of it.	7M	CO1	BL2
4		Two random variables X and Y are distributed as $f(x,y) = \begin{cases} ke^{-(x+y)} & \text{for } x \ge y \ge 0 \\ 0 & \text{otherwise} \end{cases}$	14M	C01	BL3
		(i) Are X and Y independent? (ii) Find $E(X/Y)$			
5	a)	Define Ergodicity and explain the different types of Ergodicity.	7M	CO2	BL4
	b)	State and prove the any 4 properties of Cross Correlation function.	7M	CO2	BL3
6		Derive the Mean, Mean squared value and Autocorrelation functions for a LTI system response.	14M	CO2	BL6
7	a)	Find the cross power spectral density, if $R_{XY}(\tau) = \frac{A^2}{2} cos(\omega_o \tau)$	7M	CO3	BL3
	b)	Explain the properties of Power spectral density.	7M	C03	BL4
8		Classify different noise sources and explain about effective Noise	14M	C04	BL2

Temperature, Noise equivalent bandwidth.