Course Code: 1930414

Roll No:

MLRS-R19

Max. Marks: 70



## MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

## II B.Tech I Sem Supply End Examination, October 2021 PROBABILITY THEORY AND STOCHASTIC PROCESSES (ECE)

Time: 3 Hours.

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

| 1 | a) | State and Prove Bayes Theorem                                                                                                                                                                          | 7M  | CO1   | BL3 |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|
|   | b) | Determine the probability of the card being either red or king when one card is drawn from a regular deck of 52 cards?                                                                                 | 7M  | CO1   | BL3 |
| 2 | a) | Classify random variables and explain with relevant examples.  Determine the real constant a, for arbitrary real constants m and 0 <b, such="" td="" that<=""><td>7M</td><td>CO1</td><td>BL4</td></b,> | 7M  | CO1   | BL4 |
|   | b) | $f_X(x) = ae^{\frac{- x-m }{b}}$ is a valid density function.                                                                                                                                          | 7M  | CO1   | BL3 |
| 3 | a) | Find the mean of a binomially distributed random variable.                                                                                                                                             | 7M  | CO2   | BL3 |
|   | b) | Define moment generating function and show moments can be generated using it.                                                                                                                          | 7M  | CO2   | BL3 |
| 4 | a) | Autocorrelation function of an ergodic stationary random process with no periodic component is given as $100+ 4/(1+6\tau^2)$ . Find the mean and variance of the process.                              | 7M  | CO3   | BL3 |
|   | b) | Find the average power in random process $X(t) = A_0 \cos(\omega_0 t + \Theta)$ , where $A_0$ , $\omega_0$ are constants and $\Theta$ is a uniformly distributed random variable over $(0, \Pi/2)$ .   | 7M  | CO3   | BL3 |
| 5 | a) | Two random variables X and Y are zero mean independent variables, obtain the density function of W. Given $W = X + Y$                                                                                  | 7M  | CO2   | BL3 |
|   | b) | State the properties of cross correlation function of random processes and prove any two.                                                                                                              | 7M  | CO3   | BL1 |
| 6 | a) | State and prove Weiner-Khintchine relations.                                                                                                                                                           | 10M | CO4   | BL3 |
|   | b) | Determine the cross-correlation function corresponding to the cross power spectrum $S_{XY}(\omega)=8/(\alpha+j\omega)$ , where $\alpha$ is a constant.                                                 | 4M  | CO4   | BL3 |
| 7 | a) | Derive the relation between input and output power spectral densities of a linear system                                                                                                               | 8M  | - CO4 | BL5 |
|   | b) | Write notes on effective noise temperature.                                                                                                                                                            | 6M  | CO5   | BL1 |
| 8 | a) | A source emits different symbols a, b, c, d, e with respective probabilities 0.1.0.2,0.1,0.1,0.5. Obtain the code words using Shannon-Fano coding and also calculate entropy.                          | 7M  | CO5   | BL3 |
|   | b) | Prove that $F=F_1+\frac{F_2-1}{g_{\alpha z}}+\frac{F_3-1}{g_{\alpha z}g_{\alpha z}}+\dots$ For cascade of two hyport networks.                                                                         | 7M  | CO5   | BLO |
|   |    | (05)                                                                                                                                                                                                   | 11  | Cyn,  | /   |

