

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech I Sem Supplementary Examination, July-2022 Electromagnetic Fields (EEE)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	State Coulomb's law of force between any two point charges, and indicate the units of the quantities in the force equation.	7M	CO1	BL3
	b)	Define and explain the following: (1) absolute electric potential (ii) potential difference.	7M	CO1	BL1
2		Explain coulombs Law. Three equal positive charges of 2 X 10^{-9} coulomb each are located at three corners of a square of side 20 cm. Determine the electric field intensity at the vacant corner point of the square	14M	CO1	BL3
3	a)	Show that the energy stored in a capacitor is proportional to its capacitance and square of the voltage across it.	7M	CO2	BL3
	b)	Derive Laplace and Poisson equation.	7M	CO2	BL5
4	a)	State and explain Biot-Savart's law.	7M	CO3	BL4
	b)	Obtain an expression for MFI due to a straight conductor carrying a current.	7M	CO3	BL5
5	a)	Obtain the solution of Laplace equation.	7M	CO2	BL3
	b)	A wire carrying a current of 100A is bent into a square form, 10 cm sides. Calculate the field at the centre of the coil.	7M	CO3	BL3
6		Obtain the Maxwell's equations in differential and integral forms	7M	CO4	BL3
7	a)	State and explain faradays laws of electromagnetic induction.	7M	C04	BL4
	b)	Explain the wave propagation in good conductors.	7M	CO5	BL4
8		Discuss the wave propagation in lossy dielectrics with relevant mathematical expressions.	14M	CO5	BL2