Course Code: 1920303

SET 2

MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Regular End Examination, March 2021 ENGINEERING MECHANICS (EEE)

Time: 2 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1 a)	Explain the types of supports with neat sketches?	7M	CO1	BL1
b)	Describe the equations of equilibrium?	7M	CO1	BL1
2	Three cylinders are piled up in a rectangular channel as shown in Fig.1. Determine the reactions at R_6 between the cylinder A and the vertical wall of the channel.	14M	CO1	BL3
	20kg C 5cm Wc 2 40kg 15kg 6cm 3 Fig. 1			

Dr. Gr. Sursyapiakesh Rao Assoc. Prof Mechanical Engineering Department. Usfremesh

3	a)	Find the centroid of a straight uniform wire of length L?	7M	co:	BI BI
	(b)	Find the centroid of the cross sectional area of a Z-section a shown in Fig.2.	s 7M		
		200cm - 200cm - Fig.2			
4			T 1 4 M	T <u>con</u>	77.6
		Determine the product of inertia of the L-section as shown in Fig.3 with respect to the x and y axis.	14M	CO3	BL3
		Fig.3			
<u>+</u>		rig.5			
а) D	escribe the Laws of Friction.	7M	CO2	BL1
b) E	xplain the parallel axis theorem.	7M	CO3	BL2
T	A	car starts from rest on a curved road of 250 m radius and	14M	CO4	BL3
	ca	ccelerates at a constant tangential acceleration of 0.6 /s². Determine the distance and the time for which that ir will travel before the magnitude of the total cceleration attained by it becomes 0.75 m/s².			

7	_ a)	Write the equations of motion in rectangular components.	7M	CO4	BL2
	b)	Describe the D'Alembert's principle in plane motion.	7M	CO5	BL2
8		 A lift has an upward acceleration of 1.225 m/s² a) What pressure will a man weighing 500 N exert on the floor of the lift? b) What pressure would he exert if the lift had an acceleration of 1.225 m/s² downwards? c) What upward acceleration would cause his weight to exert a pressure of 600 N on the floor? 	14M	CO5	BL3

---00000---

 \bigcap

Dr. G. Sunya prakash'.

ASSOC Prof

ME