Fina: 27.10.2021

Course Code:1930401

Roll No:

MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

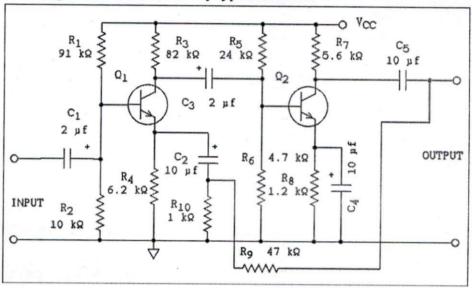
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supply End Examination, October 2021

ANALOG ELECTRONICS

(EEE)

Time: 3 Hours.


Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Derive the equation for ripple factor for the Full wave rectifier and draw its circuit diagram and waveforms.	7M	CO1	BL5
	b)	What is the significance of load line in working of transistor as an amplifier?	7M	CO1	BL1
2		Draw the circuit diagram of CC amplifier and derive the equations for Voltage gain, current gain, input and output impedances from its equivalent circuit.	14M	C01	BL5
3	a)	Draw the V-I characteristics of n-channel enhancement MOSFET and identify all the regions of operation.	7M	CO2	BL3
	b)	Show that the transconductance g_m of JFET is related to the drain current I_{DS} by $g_m = \frac{2}{ V_P } \sqrt{I_{DSS} I_D}$	7M	C02	BL3
4		An RC coupled amplifier stage used a FET with g_m =1.5mA/V, r_d =40K, R_d =50K, and R_g =10M. Assume a total shunting capacitance of 110pF. Find (a) The midband amplification (b) f_2 ,(c) C_b if fi=60Hz. Draw the respective circuit diagram.	14M	CO3	BL2
5	a)	Derive the equation for voltage gain of common source n-channel MOSFET amplifier by drawing its circuit and small signal low frequency equivalent circuit.	7M	CO2	BL6
	b)	Draw the circuit diagram of Class A power amplifier and derive the equation for its power efficiency.	7M	CO3	BL3

Find feed back factor, voltage gain, input and output resistances for the 14M CO4 BL3 following circuit and also identify type of feed back.

- 7 a) Prove that a transistor with a small-signal common emitter short circuit 7M CO4 BL2 current gain greater than 29 for RC phase shift oscillator.
 - b) Write all dc and ac ideal characteristics of operational amplifier. 7M CO5 BL1
- 8 How an op-amp is used to generate a square wave? Draw the circuit diagram 14M CO5 BL1 and explain its working.

---00000---