Max. Marks: 70

Time: 3 Hours.

Note: 1. Answer any FIVE questions.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supplementary Examination, July-2022

Data Structures

(CSE & IT)

	2. Each question carries 14 marks and may have a, b as sub questions.					
1	a)	Explain pointer implementation of queue data structure.	7M	CO1	BL2	
	b)	Explain <i>push()</i> and <i>pop()</i> functions of stack data structures with array implementation.	7M	C01	BL2	
2		Explain the operations <i>insert a node, delete a node, search a node</i> and <i>print linked list</i> with respect to single linked list implementation.	14M	C01	BL2	
3	a)	Insert the keys 10 , 15 , 16 , 20 , 30 , 25 , 26 , and 36 into a hash table of size $M = 10$. Apply quadratic probing in case of collision. Use hash function as $h(k) = k \% M$.	7M	CO2	BL3	
	b)	Assume a table has 8 slots. Using chaining, insert the following elements into the hash table. $66,66,18,72,43,65,6,17,10,5,64,16,71$, and 15 are inserted in the order. Consider Hash function : $h(k) = k \mod m$, where $m=8$	7M	CO2	BL3	
4		Apply double hashing method to insert the following keys: 76, 93, 40, 47, 10, 55. Use $h(k) = k \mod 7$ and $g(k) = 5 - (k \mod 5)$.	14M	C02	BL3	
5	a)	Explain insertion operation in AVL tree by giving example.	7M	C03	BL2	
	b)	Explain about concept of spay tree with an example.	7M	CO3	BL2	
6		Construct Binary search tree with the following keys: 10,4,15,17,2,6,1,23,9,5,14,16. Apply in-order, pre-order and post-order traversal techniques on constructed Binary search tree. Explain what kind of transformations needs to apply if we want to delete node with key 6.	14M	CO3	BL3	
7	a)	Discuss different graph traversal methods.	7M	CO4	BL2	
	b)	Explain merge sort method. Apply this to sort the following values and show different stages in it: 45,12,78,23,5,8,19,90,38,61,84,50.	7M	CO4	BL3	
8		Differentiate standard tries, compressed tries and suffix tries.	14M	C05	BL2	