

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supplementary Examination, July-2022

Mechanics of Solids

(MECHANICAL)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Define the terms: Poisson's ratio, Factor of Safety and Lateral strain	7M	CO1	BL1
	b)	A circular steel Bar of 20 mm diameter carries a tensile load of 3 kN . Find the tensile stress in the bar and the elongation in a length of 300 mm. Take $E=2 \times 10^5 \text{ N/mm}^2$.	7M	CO1	BL3
2		Derive all the relations between the Elastic constants E, N, and K .	14M	C01	BL3
3	a)	Define the shear force and bending moment? List out the types of loads acting on the beam?	7M	CO2	BL 1
	b)	Define the Beam and and describe the types of beams?	7M	CO2	BL1
4		A simply supported beam AB of 4 m span carries a uniform load of $30kN$ /m over the right hand half span. Draw SFD and BMD?	14M	CO2	BL3
				la la	
5	a)	Define the section modulus? write the equations for rectangular and circular sections?	7M	CO3	BL1
	b)	Write the assumptions made in derivation of bending equation?	7M	CO3	BL1
6		A cast iron has an I – section with top flange 80 mm x 40 mm. web $120 \text{ mm} \times 20 \text{ mm}$ and bottom flange $160 \text{ mm} \times 40 \text{ mm}$. If tensile	14M	CO3	BL4
		stress is not to exceed 30 N/mm ² and compressive stress 90 N/mm ² ,			
		what is the maximum UDL the beam can carry over a simply supported span of 6 m if the larger flange is in tension.			
		Supported Spair of o in it the farger flange is in tension.			
7	a)	Explain the meaning of principal stress.	7M	CO4	BL2
/	,			CO4	BL2
	b)	Draw and describe the Mohr's circle of stress?	7M	C04	DL2
				007	D1.4
8		Derive the torsion equation $T/J = q/r = G\theta /L$? List out the assumptions made?	14M	CO5	BL4