Note: 1. Answer any FIVE questions.

What is the maximum value in each case.

Max. Marks: 70

Time: 3 Hours.

MARRI LAXMAN REDDY JTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

II B.Tech I Sem Supply End Examination, October 2021

MECHANICS OF SOLIDS (MECH)

		2. Each question carries 14 marks and may have a, b as sub que	estions	S.		
1	a) b)	load is applied with an impact	7M 7M	CO1	BL6 BL3	
2	a) b)	Define the principle of superposition, saint venant's principle and factor of safety and what is its utility. Draw the shear force and bending moment diagram for a simply supported beam of length 9 m and carrying a uniformly distributed load of 10KN/m for a distance of 6 m from the left end. Also, calculate the maximum bending moment on the section.	7M 7M	CO1	BL1 BL3	
3	a) b)	What are the types of beams? Explain in detail with neat sketch A beam of length 12 m has overhanging of 3 m on left and right leaving the span between the supports of 6 m. It carries UDL of 8 kN/m over the entire length and a concentrated load of 10 kN at the right extreme end. Draw SF and BM diagrams and find the point of contra flexure point.	7M 7M	CO2 CO2	BL4 BL3	
4	a) b)	What do you mean by simple bending? What are the assumptions made in the theory of simple bending? Show from first principles that if a beam of rectangular section is subjected to a transverse shearing force, the maximum shear stress at a cross-section is 1.5 times the mean shear stress	7M 7M	CO3	BL1 BL3	
5	a)	A cantilever beam of 2 m long is loaded with a uniformly distributed load of 3 kN/m run over a length of 1 m from the free end. It also carries a point load of 5 kN at a distance of 1.5 m from the free end. Draw the S.F and B.M	7M	CO2	BL3	
	b)	Establish the relation to find the shear stress across sections of 1) Circular section 2) I section.	7M	C03	BL4	

6	a)	Define and explain the following theories of failure. i) Maximum principal stress theory ii) Maximum Principal strain theory	7M	CO4	BL4
	b)	A point in a strained material is subjected to mutually perpendicular stresses of 40 N/mm2 (tensile) and 20 N/mm2 (compressive). It is also subjected to a shear stress of 20 N/mm2. Draw Mohr's circle and find the principal stresses and maximum shear stress	7M	CO4	BL3
7	a)	Explain with reasons which theory of failure is best suited for i) Ductile materials and ii) Brittle materials.	7M	CO4	BL4
	b)	A cylindrical shell is subjected to internal fluid pressure. Find an expression for change in diameter and change in length of the cylinder?	7M	CO5	BL3
8	a)	A solid circular shaft of diameter 100mm has the angle of twist in a length of 2.5m, when the shaft is subjected to a torque of 12 kN-m. Find the maximum shear stress and angle of twist. Take $G = 85$ GPa	7M	CO5	BL3
	b)	A spherical shell of 1.5 m diameter is subjected to an internal pressure of 1.45 N/mm2 . Taking the maximum allowable stress as 110 N/mm2 , find the necessary thickness of plate. Take the joint efficiency at 71% .	7M	CO5	BL3

---00000----