Course Code: 1940415 Roll No: MLRS-R19

MARRI LAXMAN REDDY

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Supply End Examination, July 2022 **Electromagnetic Fields and Waves** (ECE)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1.	a)	Define Coulumb's law for Electrostatic fields.	2M	CO1	BL-1
	b)	Write the point form of continuity equation and explain its significance.	2M	CO1	BL-2
	c)	Discuss Biot Savart's law.	2M	CO2	BL-3
	d)	Derive the expression for Maxwell's equation, del.B=0	2M	CO2	BL-5
	e)	Recall the Maxwell's equations in integral form for Time invariant fields.	2M	CO3	BL-1
	f)	Summarize the boundary conditions at the interface between Dielectric-Conductor.	2M	CO3	BL-2
	g)	Formulate the 2 wave equations for conducting medium.	2M	CO4	BL-5
	h)	Explain Brewster's angle.	2M	CO4	BL-2
	i)	Distinguish between TE and TM modes of wave propagation.	2M	CO5	BL-4
	j)	Show how phase velocity and group velocity are related.	2M	CO5	BL-1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Derive the 2 Maxwell's equations for Electrostatic Fields.	5M	CO1	BL-5
	b)	State Gauss's law. Using divergence theorem and Gauss's law, relate the displacement density D to the volume charge density $\rho_{\nu}.$	5M	CO1	BL-2
		OR			
3		Evaluate the electric field due to an infinite line charge and infinite sheet charge.	10M	CO1	BL-6
4	a)	Elaborate on the Forces due to Magnetic Fields.	5M	CO2	BL-2
	b)	Explain the concept of Magnetic vector potential and its significance.	5M	CO2	BL-2

	Cou	rse Code: 1940415 Roll No:	ML	RS-R1	9
5		Discuss and Derive Ampere's circuital law. What is Magnetic Flux density? Show the relation between Magnetic Flux density and Magnetic field intensity.	10M	CO2	BL-3
6	a)	State Faraday's law. How is it related to Lenz's law?	5M	CO3	BL-1
	b)	Derive the differential form of Maxwell's curl equations for time varying fields.	5M	CO3	BL-5
		OR			
7		What is the inconsistency associated with Ampere's law and Displacement current Density? Explain with equations.	10M	CO3	BL-3
8	a)	Develop all the relations between E and H.	5M	C04	BL-6
	b)	Explain wave propagation in dielectric medium.	5M	C04	BL-2
		OR	3.0		
9		Classify the types of Polarization. Elaborate on the types of Polarization? Formulate the conditions for the occurrence of circular polarization?	10M	CO4	BL-4
10	a)	Discuss the impossibility of TEM waves in rectangular waveguides.	5M	CO5	BL-3
	b)	What is effective dielectric constant in Microstrip lines? How does it affect the design parameters of a Microstrip line.	5M	CO5	BL-4
		OR			
11		Distinguish between Rectangular Waveguides and Microstrip lines. Derive the equation for power transmission in a rectangular waveguide.	10M	C05	BL-4

---00000---