

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Supply End Examination, July 2022 Control Systems (EEE)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	List the advantages and disadvantages of open loop control systems	2M	CO1	R
	b)	Mention the analogue electrical quantities for the mass, damper and spring elements of a mechanical system in force-voltage analogy	2M	CO1	U
	c)	List out the time domain specifications of a second order system	2M	CO2	R
	d)	What is centroid? How the centroid is calculated?	2M	CO2	R
	e)	Define gain crossover frequency and phase crossover frequency	2M	CO3	R
	f)	What is polar plot?	2M	CO3	R
	g)	Write the features of lead compensator	2M	CO4	U
	h)	What is the effect of PI controller on the system performance?	2M	CO4	U
	i)	Summarize the concept of observability with reference to the kalman's test	2M	CO5	R
	i)	What is the significance of state transition matrix?	2M	CO5	U

PART-B

(10*5 Marks = 50 Marks)

- 2 Consider the mechanical translational system shown in Fig.1.
- 10M CO1 A
- (i) Identify the displacements of masses and write the equations that describing the motion.
- (ii) Obtain the transfer function X1(s)/F(s).

3 For the mechanical rotational system shown in Fig.3.

10M CO1 Ap

- (i) Draw the Torque-Voltage electrical analogous circuit.
- (ii) Draw the Torque -Current electrical analogous circuit

An

Ap

- 4 a) Obtain the response of a unity feedback system whose open-loop transfer 5M CO2 Ap function is $G(s) = \frac{3}{s(s+4)}$ for a unit-step input.
 - b) A physical system characteristic equation is represented by a sixth order 5M CO2 A equation as, $s^6 + 2s^5 + 8s^4 + 13s^3 + 20s^2 + 16s + 16 = 0$. Using Routh stability criterion, find whether the system is stable or not, give the reasons.

OR

- Sketch the root locus plot for the system represented through 10M CO2 Ap $G(s)H(s) = \frac{K}{s(s+2)(s+6)}$ From the obtained root locus plot, estimate the range of values of the system gain 'K' for which the system is –
 (a) Absolutely stable (b) Marginally stable (c) Unstable
- The open loop transfer function of a unity feedback system is given by G(s) = 1/[s(1+s)(1+2s)]. Sketch the polar plot and determine the gain margin and phase margin.

OR

- 7 Sketch the Bode plot for the following transfer function and obtain the gain and phase cross over frequencies G(s) = 10/[s(1+0.4s)(1+0.01s)].
- What is a lag compensator? Obtain the transfer function of a lag 10M CO4 A compensator from its equivalent electrical circuit and draw the pole-zero plot.

OR

- Compensate the system with the open-loop transfer function 10M CO4 $G_f(s)=k/[s(0.5s+1)(0.1s+1)]$ to meet the following specifications i)damping ratio=0.5 ii) T_s =8s iii) velocity error constant K_v >8s
- 10 a) The dynamics of a physical system is described by the differential equation $\frac{d^3y}{dz^3} + 2\frac{d^3y}{dz^2} + 5\frac{dy}{dz} + 7y = 4u$. Assume appropriate state variables and construct its state model.
 - b) A linear time invariant system is characterized by the homogeneous state 5M CO5 Ap equation,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} x 0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Compute the solution of the homogeneous equation assuming the initial state vector

OR

A dynamical system is represented through the state model as indicated 10M CO5 below.

$$\dot{X}(t) = \begin{bmatrix} 0 & 2 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u(t) \quad and \quad Y(t) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Investigate whether the given system is completely state controllable and observable. Also, comment on the stability of the system.