

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Supply End Examination, March 2022 Control Systems (EEE)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

a) What are the characteristics of negative feedback?
 b) State control system. And explain its classifications.
 7M CO1 BL1
 BL2

2 Determine the transfer function of the block diagram shown below using 14M CO1 BL5 block diagram reduction technique.

- 3 a) What are the difficulties in R-H stability criterion? Explain how you 6M CO2 BL1 can overcome them.
 - b) Define type and order of a control system, and find the type and 8M CO2 BL3 order of the following systems:

i. $G(s)H(s) = 100/s(s^2+4s+200)$

ii. $G(s)H(s) = 200/s^2(s^2+10s+200)$

iii. $G(s)H(s) = 4(s^2+10s+100)/[s(s+3)(s^2+2s+10)]$

iv. G(s)H(s) = 200/(1+01s)(1+0.5s)

- 4 a) Find the time response specifications of a second order system for 7M CO2 BL4 the given transfer function G(S)=(14(S+3))/(S(S+5)(S²+2S+2)).
 b) Write down the procedure for construction of Bode plot. And also 7M CO2 BL1
 - b) Write down the procedure for construction of Bode plot. And also 7M CO2 mention its applications.
- 5 a) A system is given by $G(s) = (4s+1)/[s^2(s+1)(2s+1)]$. 10M CO3 BL5 Sketch the Nyquist plot & hence determine the stability of the system.
 - b) Compare polar with Nyquist plot.

4M CO3 BL4

Design a suitable lag compensator root locus for the system with,

14M CO4 BL6

 $G(S) = \frac{\kappa}{s(s+1)(s+2)}$ meet the specifications as

a. Damping ratio = 0.5

b. $K_v \ge 5 \text{ sec}^{-1}$

c. Undamped natural frequency = 0.7 rad/sec

- 7 a) What is compensation? Mention the different types of 7M CO4 BL2 compensators.
 - b) Explain state model and output model with suitable example. 7M CO1 BL3
- 8 a) Convert the following system matrix to canonical form $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix}$
 - b) Consider the differential equation system given by 7M CO1 BL5 $2\ddot{y} + 3\ddot{y} + 5\dot{y} + 2y = u$ y(0)=0.1,y(0)=0.05. Obtain the response y(t),subjected to the given initial condition

ed to the given mind come

---00000---

CO: Course Outcomes BL Blooms Taxonomy Levels

Note:1. Font style: Cambria.

2.The Course Outcome (CO) and Bloom's Taxonomy Level (BL) shall be mentioned for each question.