

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMEN

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

II B.Tech II Sem Supply End Examination, July 2022 Kinematics of Machinery (MECH)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit.

 Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1.	a)	Differentiate between (i)Lower pairs and Higher pairs.(ii) rolling pair and spherical pair	2M	CO1	BL1
	b)	What is inversion of a mechanism? List out inversions of Single slider crank chain.	2M	CO1	BL2
	c)	What is Coriolis component of acceleration? Write any two mechanisms where Coriolis component exists.	2M	CO2	BL2
	d)	Define instantaneous centre and write properties of instantaneous centres.	2M	CO2	BL1
	e)	What is the use of universal coupling? Write applications of universal coupling.	2M	CO3	BL2
	f)	List out Straight line motion mechanisms	2M	CO3	BL2
	g)	Define the following with reference to a cam. (i)Lift (ii) Base circle (iii) Pressure angle (vi) Pitch point	2M	CO4	BL1
	h)	In a cam and follower, the follower moves with uniform velocity during ascent. Lift of the follower is 50mm. Angle of ascent is 100°. Angular velocity of cam is 10 rad/sec. Determine the magnitude of	2M	CO4	BL3
	i)	velocity of follower during ascent. Define the following with reference to gears (i)Circular pitch (ii)Addendum (iii)Tooth thickness (iv) Pitch point.	2M	CO5	BL1
	j)	Distinguish simple and compound gear train with a neat sketch.	2M	CO5	BL3

PART-B

(10*5 Marks = 50 Marks)

2	a)	Explain various types of constrained motions	6M	CO1	BL2
_	b)	In a crank and slotted lever quick return mechanism, the distance	4M	CO1	BL3
	ر	between the fixed centers is 240mm and the length of the driving	55 STATE OF		
		crank is 120mm. Find the inclination of the slotted bar with the			
		vertical in the extreme position and the time ratio of cutting stroke			
		to the return stroke. If the length of the slotted bar is 450 mm, find			
		the length of stroke if the line of stroke passes through the extreme			
		positions of the free end of the lever.			
		OR	*		

OR

3 Define Kinematic pair and explain various types of kinematic pairs 10M CO1 BL2 with examples.

	Course Code: 1940317 Roll No:		MLRS-R19			
4	a) b)	State and Prove Kenedys theorem. Explain its use. What is Coriolis component of acceleration? Write an mechanisms where Coriolis component exists. OR	y two	7M 3M	CO2 CO2	BL2 BL2
5		In a slider crank mechanism the crank is 300 mm leat 100rpm in clockwise direction. Length of is 1500mm, when the crank turns through 3 determine a. Velocity of the slider b. Angular velocity of connecting rod. c. Acceleration of slider.	connecting rod	10M	CO2	BL4
6	a)	Derive the expression for maximum fluctuation of sp	eed of driven	3M	C03	BL3
	b)	shaft of a universal coupling A Hooke's joint connects a shaft running at a uniform rpm to a second shaft. The angle between their axes the velocity and acceleration of the driven shaft at a the fork of the driving shaft has turned through an ar the plane containing the shaft axes. If mass of drive and radius of gyration is 30mm determine torque on OR	being 15°. Find an instant when agle of 10° from an shaft is 10kg	7M	C03	BL3
7		State and prove the principle of Exact straight line m explain how exact straight line motion can be obtain mechanism.	,	10M	C03	BL2
8		A cam operating a knife edged follower has the follow (i) Follower moves outward through 40mm d cam rotation (ii) Follower dwells for next 45° (iii) Follower returns to its original position in (iv) Follower dwells for rest of the rotation. Displacement of the follower is with SHM both and descent. Least radius of cam is 50mm.Dra profile OR	uring 60ºof n next 90º. h during ascent	10M	CO4	BL3
9		Design a cam to raise a valve with uniform velocity in 1/3 rd of revolution, keep it fully raised throug revolution and to lower it with uniform ac retardation, with acceleration equal to retardation revolution. The valve remains closed during the revolution. Minimum radius of cam is 25mm, diam 20mm. Axis of valve rod passes through cam axis. It rotates at 100rpm find the maximum velocity and the rod during rising and lowering.	gh 1/12 th of a celeration and on, in 1/6 th of the rest of the leter of roller is If the cam shaft	10M	CO4	BL4
10)	Derive the expression for length of path of contact of gear	an involute	10M	CO5	BL3
11	l	OR What is the use of Differential of automobile? Describe Differential of automobile and explain how different be obtained?		10M	CO5	BL3
		00000				