Course Code: 1950519

Roll No:

MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Regular End Examination, January 2022 Formal Languages and Automata Theory (CSE & IT)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

2. In Part - A, answer all questions which carries 20 marks.

3. In Part – B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	What is a state and write about few types of states?	2M	CO1	BL1
	b)	Write an input string that accept all stings containing 0's and 1's.	2M	CO1	BL1
	c)	What are the properties of regular expressions?	2M	CO2	BL1
	d)	Define NFA.	2M	CO2	BL1
	e)	Write about left most derivation and right most derivation?	2M	CO3	BL1
	f)	Define a Context free grammar.	2M	CO3	BL1
	g)	Write rules of Chomsky Normal Form.	2M	CO4	BL1
	h)	Write a procedure for eliminating unit productions?	2M	CO4	BL1
	i)	Define Turing Machine.	2M	CO5	BL1
	j)	Define Post correspondence problem.	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Define Finite Automaton? Explain about the model of Finite Automaton?	5M	CO1	BL4		
•	b)	Construct a NFA € equivalent to the regular expression 10(0+11)0*1?	5M	CO1	BL6		
OR							
3		Design a mealy machine to print out 1's complement of an input bit string?	10M	CO1	BL6		
4	a)	Write the steps to construct regular expression from given DFA?	5M	CO2	BL2		
	b)	Discuss in brief about applications of pumping lemma?	5M	CO2	BL2		
OR							
5		Write in brief about the algebraic rules for regular expressions?	10M	CO2	BL2		

6	a)	Obtain GNF S \rightarrow AB, A \rightarrow BS/b, B \rightarrow SA/a?	5M	CO3	BL3			
	b)	Define Ambiguous Grammar? Check whether the grammar $S\rightarrow aAB,A\rightarrow bC/cd,C\rightarrow cd,B\rightarrow c/d$ Is Ambiguous or not?	5M	CO3	BL3			
OR								
7		Construct a Left most Derivation for the string 0011000using the grammar $S\rightarrow A0S/0/SS$, $A\rightarrow S1A/10$?	10M	CO3	BL6			
8	a)	Construct Turing machine for the languages containing the set of all strings of balanced paranthesis	5M	CO4	BL6			
	b)	Discuss in brief about decision properties of Context free languages?	5M	CO4	BL2			
	OR							
9		Design Turing machine and its transition diagram to accept the language L = { $a \cdot b \cdot n >=1$ }	10M	CO4	BL6			
10	a)	Explain about Chomskey Hierarchy in detail.	5M	CO5	BL4			
	b)	Explain about Universal Turing Machine?	5M	CO5	BL4			
OR								
11		What is decidability? Explain in brief about any two undecidable problems?	10M	CO5	BL4			

---00000----