Course Code: 1950203

Roll No:

MARRI LAXMAN REDDY E OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

III B.Tech I Sem Supply End Examination, December 2022

Control Systems

(ECE)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1. a)	Why negative feedback is preferred in control systems?	2M	COI	U
b)	Define transfer function.	2M	CO1	R
c)	What are the applications of root locus?	2M	CO2	R
d)	Define rise time.	2M	CO2	R
e)	Define Gain Crossover frequency and Gain Margin.	2M	CO3	R
f)	What is Nyquist plot?	2M	CO3	U
g)	What is P and PI controller?	2M	CO4	R
h)	What is lead compensator?	2M	CO4	R
i)	Define state and state variable.	2M	CO5	R
j)	Define Controllability.	2M	CO5	R

PART-B

(10*5 Marks = 50 Marks)

- Explain open-loop and closed-loop control systems. List out the 5M CO₁ U advantages and drawbacks for both systems. b) Explain the effect of feedback on sensitivity. 5M CO1

U

Find the transfer function of the given signal flow graph shown below. 3

5M CO1 Ap

b) Determine the transfer function relating X₁(s) to F(s) for the mechanical 5M CO1 Ap system shown in the figure below.

4	aj	$s^3 + 2Ks^2 + (K+2)s + 4 = 0$. Determine the range of values of K for the	JIVI	002	7111
	b)	system to be stable. By means of RH criterion, determine the stability of the system represented by the characteristic equation $s^4 + 2s^3 + 8s^2 + 4s + 3 = 0$.	5M	CO2	An
		OR			
5	a)	Draw the complete root locus for the system described by	5M	CO2	Ap
		$G(s)H(s) = \frac{K(s+3)}{s(s^2+s+2)}$.			
	b)	$s(s^2+s+2)$ Find the steady state error to the following inputs for the system	5M	CO2	Ap
	U)	$G(s) = \frac{10}{s(s+5)}$ i. r(t)=10 u(t), ii. r(t)=10t u(t)	51.1		***
6	a)	Explain the Nyquist criteria for determining the stability of a system.	5M	CO3	An
	b)	Sketch the bode plot for the open lop transfer function of a system is given by V	5M	CO3	Ap
		$G(s) = \frac{K}{s(1+0.4s)(1+0.04s)}$			
		OR			
7	a)	Explain how the Gain margin and phase margin can be determined from the bodeplot.	5M	CO3	An
	b)	Sketch the polar plot for the transfer function $G(s) = \frac{1}{(s+4)(s+8)}$	5M	CO3	Ap
8	a)	Discuss the concept of insensitivity and robustness of control systems.	5M	CO4	U
	b)	Explain how root loci method is used to design feedback controller.	5M	CO4	U
		OR			
9	a)	What do you mean by the design specification in frequency domain?	5M	CO4	U
	b)	What are the different applications of PI and PID controllers?	5M	CO4	U
			514	COL	11
10	a)	Write short notes on Controllability and Observability.	5M 5M	CO5	U Ap
	b)	Obtain the state model of the transfer function $\frac{Y(s)}{U(s)} = \frac{1}{s^2 + 6s + 5}$	SIVI	603	лр
		OR			
11	a)	Find state transition matrix using Laplace transformation method for the $\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$	5M	CO5	Ap
		matrix $A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$			
	b)	Explain the concept "Diagonalization of state matrix" with an example.	5M	CO5	U
	U)	Zirkimi mi Anitaki Zirkimi zirki			

---00000---

BL - Blooms Taxonomy Levels