

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Supply End Examination, August 2022 Control Systems

(ECE)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1. a)	What are the basic elements used for modelling mechanical translational system?	2M	CO1	L1
b)	Define transfer function.	2M	CO1	L1
c)	List out the limitations of R-H criterion.	2M	CO2	L1
d)	State marginal stability.	2M	CO2	L1
e)	Draw a polar plot and explain.	2M	CO3	L2
f)	Write the expression for resonant peak.	2M	CO3	L2
g)	Discuss PID controller.	2M	CO4	L1
h)	Explain about lag compensator.	2M	C04	L1
i)	Give merits and demerits of state variable techniques.	2M	CO5	L2
j)	Show that the eigen values are invariant under a linear			
	transformation.	2M	CO5	L2

PART-B

(10*5 Marks = 50 Marks)

Describe the effect of feedback on Gain, Stability, Noise and Sensitivity of a 10M CO1 L2 closed loop control system.

OR

3 Determine the transfer function C/R for the block diagram given in Fig.1. 10M CO1 L3

4 a	a)	Derive the expression for time domain specification of a under damped	5M	CO2	L2				
b	0)	second order system to a step input. How steady state error of a control system is determined? How it can be reduced?	5M	CO2	L2				
OR									
5		Sketch the root locus for the system given by	10M	CO2	L4				
		$G(s)H(s) = \frac{K}{s(s+2)(s^2+2s+2)}$							
		Determine the value of "k" at imaginary axis crossing point. Give the steps followed for construction of Root locus.							
6 a	a)	Write short notes on various frequency domain specifications.	5M	CO3	L3				
b	0)	Explain about the steps followed for the construction of Bode plot.	5M	CO3	L3				
		OR							
7		A system is given by	10M	CO3	L4				
		$G(s) = \frac{4s+1}{s^2(s+1)(2s+1)}$							
		Sketch the Nyquist plot & hence determine the stability of the system.							
		y 1 - 1							
8 a	1)	Illustrate the procedure followed to construct a root locus using root locus technique.	5M	CO4	L3				
b)	Obtain the transfer function for lead compensator and draw pole-zero.	5M	CO4	L3				
	OR								
9		What are the different types of controllers that are used in closed loop control systems? Explain in detail.	10M	CO4	L4				
10 a	1)	Convert the following system matrix to canonical form:	5 14	COF					
10 a	ij	0 7	5M	CO5	L4				
		$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 1 & 3 & -1 \end{bmatrix}$							
		1 3 13							
b)	Enumerate state model and output model with suitable example.	5M	CO5	L4				
		OR							
11		Given the system $x(t) = A x(t) + B u(t)$, $Y(t) = C x(t)$	10M	CO5	L5				
		Where $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, C = [101]$							

Determine the controllability and observability of the system.