

MARRI LAXMAN REDDY E OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Supply End Examination, December 2022 Formal Languages and Automata Theory

(CSE & IT)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1. a)	Define NFA with epsilon moves	2M	CO1	BL1
b)	Differentiate Mealy and Moore machine	2M	CO1	BL2
c)	List all string up to length 4 for the regular expression 01*01*	2M	CO2	BL1
d)	Define pumping lemma for regular languages	2M	CO2	BL1
e)	Develop CFG for the language $L = \{a^n b^n \mid n \ge 1\}$	2M	C03	BL3
f)	Define ambiguous context free grammar	2M	CO3	BL1
g)	Remove ϵ -productions from the grammar S \rightarrow aSa bSb ϵ	2M	CO4	BL3
h)	Define Greibach Normal Form	2M	CO4	BL1
i)	Write about halting problem of Turing machine	2M	CO5	BL2
j)	Define recursive language.	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

a) Convert the following NFA to DFA

b) Minimize the following DFA and draw the minimized DFA

5M CO1 BL3

- b) Design DFA for the language all strings over the alphabet {a,b} 5M CO1 BL3 which are ending with **aa**
- 4 a) Consider the following regular expression **0*11(01+1)***. 5M CO2 BL3 Convert it to it's equivalent finite automata
 - b) List and explain properties of regular languages 5M CO2 BL2

BL3

5M

5M

CO5

BL₂

CO2

OR

5 a) Apply equivalence of two DFAs algorithm to check whether the following DFA's M1 and M2 are equivalent or not

- b) Show that the language $L = \{0^n 1^n \mid n \ge 1\}$ is not regular language. 5M CO2 BL3
- 6 a) Design PDA for the language $L = \{a^n c b^n \mid n \ge 1\}$ 5M CO3 BL3
 - b) Perform left most derivation, right most derivation and parse tree for 5M CO3 BL3 the string **abab** by considering the grammar $S \rightarrow aSbS \mid bSaS \mid \epsilon$, whe S is the only variable in the grammar and $\{a,b\}$ are terminals

OR

- 7 a) Design PDA for the language $L = \{wcw^R \mid \omega \in (a+b)^*, \omega^R \text{ is reverse of } 5M \text{ CO3 BL3} \omega \text{ and } \mathbf{c} \text{ is special symbol.}$
 - b) Discuss different methods to design push down automata 5M CO3 BL2
- 8 a) Convert the following CFG to it's equivalent Chomsky normal form 5M CO4 BL3
 E → E + T | T

$$T \rightarrow T * F \mid F$$

$$F \rightarrow id$$

Where $V = \{E, T, F\}, T = \{+, *, id\}$ and E is start variable

b) Discuss closure properties of context free languages. 5M CO4 BL2

OR

- 9 a) Design Turing Machine for the language $L = \{a^n b^n c^n \mid n \ge 1\}$ 5M CO4 BL3
 - b) Construct Greibach Normal Form for the grammar $S \rightarrow aA \mid bB \mid \epsilon$, $A \rightarrow a$, $B \rightarrow b$ 5M CO4 BL3
- 10 a) List and explain the properties of recursively enumerable languages 5M CO5 BL2
 - b) What is PCP? Give an example for it 5M CO5 BL2

OR

- 11 a) What is decidability? List few decidable and un decidable problems 5M CO5 BL2
 - b) Briefly discuss about counter machines