

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

III B.Tech I Sem Supply End Examination, July 2022 Formal Languages and Automata Theory (CSE & IT)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Draw a NFA which accepts the set of all strings whose second last from LHS symbol is 1?	2M	CO1	BL1
	b)	Construct a Finite Automata that accepts {0,1}+	2M	CO1	BL1
	c)	If a Regular grammar G is given by $S\rightarrow aS/a$ Find DFA (M) accepting L(G)?	2M	CO2	BL1
	d)	Construct a regular grammar for L= {0n 11/n>=1}	2M	CO2	BL1
	e)	Construct a Derivation tree for the string 0011000using the grammar $S\rightarrow A0S/0/SS$, $A\rightarrow S1A/10$?	2M	CO3	BL1
	f)	Define Push Down Automata?	2M	CO3	BL1
	g)	Give an Example of a Recursive enumerable language?	2M	CO4	BL1
	h)	When do you say that a Turing Machine accepts a string?	2M	CO4	BL1
	i)	What is undecidable problem? How it can be solved?	2M	C05	BL1
	j)	Define Unrestricted grammar?	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Construct an NFA for $r = (a+bb)^* ba^*$	5M	CO1	BL3
	b)	Write in detail the Chomsky hierarchy of formal languages?	5M	CO1	BL1
		OR			
3		Construct a NFA equivalent to the regular expression (10+11)*00.	10M	CO1	BL3
4	a)	Define Regular Expression? Explain about the Properties of Regular Expressions?	5M	CO2	BL4
	b)	Write the Algorithm for minimizing DFA?	5M	CO2	BL1
		OR			
5		Explain in brief about closure properties of regular languages?	10M	CO2	BL4

6	a)	Construct a Derivation tree for the string 0011000using the grammar S→A0S/0/SS A→S1A/10	5M	CO3	BL3			
	b)	Construct a PDA for L={ wcw^{R}/w belongs to $(0+1)^{*}$ }	5M	CO3	BL3			
OR								
7		Show that for every PDA then there exists a CFG such that $L(G)=N(P)$?	10M	CO3	BL3			
8	a)	Obtain GNF equivalent to the grammar $E \rightarrow E+T/T$, $T \rightarrow T*F/F$, $F \rightarrow (E)/a$?	5M	C04	BL3			
	b)	Design a Turing Machine to recognize the language $\{0 \text{ n } 1\text{ n / n} >= 1\}$	5M	C04	BL6			
OR								
9		Discuss in brief about church hypothesis?	10M	CO4	BL2			
10	a)	Explain in detail about NP Complete and NP hard problems	5M	CO5	BL4			
	b)	Define Post Correspondence Problem? Explain in brief about PCP with an example	5M	CO5	BL1			
OR								
11		Explain about the Decidability and Undecidability Problems?	10M	CO5	BL4			

---00000---