

examples.

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech I Sem Regular End Examination, February 2022 Machine Learning (IT)

Time: 3 Hours.	Max. Marks: 70
----------------	----------------

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

		(10*2 Mark	KS = 20	Marks	,		
1.	a)	Define learning.	2M	CO1	BL1		
	b)	What are the key ideas of statistics which influence machine learning?	2M	CO1	BL4		
	c)	What is the role of activation function?	2M	CO2	BL3		
	d)	State central limit theorem.	2M	CO2	BL1		
	e)	What are the advantages of instance based methods?	2M	CO3	BL2		
	f)	Define error of hypothesis.	2M	CO3	BL1		
	g)	State rule based learning.	2M	CO4	BL1		
	h)	What is a horn clause?	2M	C04	BL1		
	i)	How to compute weakest pre-image of the explanation?	2M	CO5	BL3		
	j)	What is analytical learning?	2M	CO5	BL1		
f		PART- B					
		(10*5 Marks = 50 Marks)					
		(10*5 Marks	= 50 N	Aarks)			
		(10*5 Marks	s = 50 N	Marks)			
2	a)	Illustrate general-to-specific ordering of hypotheses in concept	5 = 50 N 5M	Marks)	BL2		
2	a) b)				BL2 BL3		
2		Illustrate general-to-specific ordering of hypotheses in concept learning. Explain the key property of FIND-S algorithm for concept learning	5M	C01			
2		Illustrate general-to-specific ordering of hypotheses in concept learning. Explain the key property of FIND-S algorithm for concept learning with necessary example.	5M	C01			
3	b)	Illustrate general-to-specific ordering of hypotheses in concept learning. Explain the key property of FIND-S algorithm for concept learning with necessary example. OR Discuss the basic design issues and approaches to machine learning by considering a program to learn to play checkers.	5M 5M 10M	C01 C01	BL3		
	b)	Illustrate general-to-specific ordering of hypotheses in concept learning. Explain the key property of FIND-S algorithm for concept learning with necessary example. OR Discuss the basic design issues and approaches to machine learning by considering a program to learn to play checkers. Discuss the representational power of a perceptron.	5M 5M 10M	CO1 CO1 CO2	BL3 BL2 BL1		
3	b)	Illustrate general-to-specific ordering of hypotheses in concept learning. Explain the key property of FIND-S algorithm for concept learning with necessary example. OR Discuss the basic design issues and approaches to machine learning by considering a program to learn to play checkers.	5M 5M 10M	C01 C01	BL3		
3	b)	Illustrate general-to-specific ordering of hypotheses in concept learning. Explain the key property of FIND-S algorithm for concept learning with necessary example. OR Discuss the basic design issues and approaches to machine learning by considering a program to learn to play checkers. Discuss the representational power of a perceptron. Explain the gradient descent algorithm for training a linear unit.	5M 5M 10M	CO1 CO1 CO2	BL3 BL2 BL1		

6	a)	a) What is case based reasoning? Why is it known as lazy learner?		CO3	BL4		
	b)	Discuss KNN algorithm.	6M	CO3	BL2		
	OR						
7		What is Bayesian belief network? How is it trained using expectation maximization algorithm? Explain with an illustrative example.	10M	CO3	BL5		
8	a)	What are the advantages of first order representations over propositional representations?	5M	CO4	BL3		
	b)	Discuss the basic FOIL algorithm.	5M	CO4	BL1		
		OR					
9		Consider the two strings as initial population for genetic algorithm and generate all possible off springs using various operators. String 1: 11101001000 String 2: 00001010101	10M	CO4	BL6		
10	a)	Discuss the practical problems with applying explanation-based learning to learning search control.	g 5M	CO5	BL4		
	b)	Compare pure analytical learning with pure inductive learning.	5M	CO5	BL2		
		OR					
11		What are the main properties of PROLOG-EBG algorithm? Is it deductive or inductive? Justify your answer.	10M	CO5	BL5		

---00000---