

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech II Sem Regular End Examination, June 2022 Machine Learning

(Computer Science and Engineering)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1.	a)	Compare Entropy and Information Gain.	2M	CO1	BL2
	b)	What is the inductive bias of decision trees?	2M	CO1	BL1
	c)	Discuss the Perceptron training rule.	2M	CO2	BL2
	d)	State the conditions in which Gradient Descent is applied.	2M	CO2	BL1
	e)	What are Consistent Learners?	2M	CO3	BL2
	f)	Explain conditional Independence with an example.	2M	CO3	BL2
	g)	Write the steps for Sequential Covering algorithm.	2M	CO4	BL1
	h)	When does a temporal difference error occur?	2M	CO4	BL1
	i)	Define Explanation based learning.	2M	CO5	BL1
	j)	Compare Inductive and analytical learning.	2M	C05	BL2

PART-B

(10*5 Marks = 50 Marks)

- 2 a) How is Candidate Elimination algorithm different from Find-S algorithm? 5M CO1 BL2
 - b) Trace the Candidate Elimination Algorithm for the hypothesis space 'H' 5M CO1 BL3 given the sequence of training tuples from the below table

 H'= <?, Cold, High, ?,?,?>v<Sunny, ?, High, ?,?,Same>

S No	Sky	Air Temp	Humidity	Wind	Water	Fore cast	Enjoy Sport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Course Code: 1960523 Roll No: MLRS-R19								
3		Discuss in detail about Hypothesis Space Search in Decision tree Learning.	10M		BL2			
4	a)	Illustrate Back propagation algorithm with an example.	5M	CO2	BL3			
	b)	Derive the Back propagation rule considering the training rule for Output Unit weights and Training Rule for Hidden Unit weights. OR	ut 5M	CO2	BL3			
5		Describe the Stochastic Gradient Descent version of the Back Propagation algorithm for feed forward networks containing two layers of sigmoid units.	on 10M	CO2	BL2			
6	a)	Define MAP hypothesis. Derive the relation for hMAP using Bayesian theorem.	5M	CO3	BL6			
	b)	Consider a medical diagnosis problem in which there are two alternative hypotheses: 1. That the patient has a particular form of cancer (+) and 2. That the patient does not (-). A patient takes a lab test and the resurcomes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer	2. lt ly ct ot r.	CO3	BL3			
		Determine whether the patient has Cancer or not using MAP hypothesis. OR						
7		Define Bayesian theorem? What is the relevance and features of Bayesia theorem? Explain the practical difficulties of Bayesian theorem.	n 10M	CO3	BL4			
8	a)	Define First Order Logic. Describe the learning sets of First Order rules: FOIL.	5M	CO4	BL2			
	b)	Elucidate the concept of temporal difference learning with examples.	5M	CO4	BL2			
		OR						
9		Explain the Q function and Q Learning Algorithm assuming deterministic rewards and actions with example.	10M	CO4	BL2			
10	a) .	Explain the inductive analytical approaches to learning.	5M	CO5	BL2			
	b)	How to use prior knowledge to initialize the hypothesis?	5M	CO5	BL1			
OR								
11		How to Augment Search operators using prior knowledge? Explain.	10M	CO5	BL4			