

MARRI LAXMAN REDDY

INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

III B.Tech II Sem Regular End Examination, June 2022

Antennas and Propagation (Electronics and Communication Engineering)

Time: 3 Hours. Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

5M

CO₂

L2

1.	a) b)	What is isotropic radiator? The radial component of the radiated power density of an antenna is given by $W_{rad} = \frac{A_0 sin\theta}{r^2} \widehat{a_r} \ W/m^2$ where A_0 is the peak value of the power density, θ is the usual spherical coordinate, and $\widehat{a_r}$ is the radial unit vector. Determine the total radiated power.	2M 2M	CO1 CO1	L1 L3			
	c)	How the excitation currents are distributed in Binomial array.	2M	CO1	L2			
	d)	What are the advantages of arrays?	2M	CO1	L1			
	e) f)	What is folded dipole? What is the value of its impedance? What type of polarization is obtained from helical antenna in axial and normal modes?	2M 2M	CO1	L3 L4			
	g)	What is mean by fringing in Microstrip antennas?	2M	CO1	L2			
	h)	What is spill over in parabolic reflector?	2M	CO1	L2			
	i)	What is wave tilt?	2M	CO3	L1			
	j)	Write the relationship between MUF and skip distance	2M	CO3	L2			
		PART- B						
		(10*5 Marks = 50 Marks)						
2	a)	Define the terms with respect to antenna: (i) Gain (ii) Efficiency (iii) Beam width	6M	CO1	L1			
	b)	Derive the equation for input impedance of antenna in transmission and receiving modes.	4M	CO1	L3			
		OR						
3		Derive the field equations for a half wave dipole starting form Maxwell's equations.	10M	CO1	L3			
4	a)	Derive the equation for gain of broad side array with neat diagrams.	5M	CO1	L3			

b) Explain how the radiation pattern of antenna is measured.

Co	ours	MLRS-R19									
Course Code: 1960419 Roll No: MLRS-R19 OR											
5		The z-plane array factor of an array of isotropic elements placed along the z-axis is given by (assume $\beta = 0$) AF(z) = $(z + 1)^4$ Determine the (i) Number of elements of the discrete array to have such an array	10M	CO1	L5						
		factor. (ii) Normalized excitation coefficients of each of the elements of the array (the ones at the edges to be unity).									
		(iii) Classical name of the array designwith these excitation coefficients.(iv) Angles in θ in degrees of all the nulls of the array factor									
		when the spacing d between the elements is $\lambda 0/4$ (v) Half-power beamwidth (in degrees) of the array factor when d =									
		$\lambda 0/2$. (vi) Maximum directivity (dimensionless and in dB) of the array factor when d = $\lambda 0/2$									
6	a)	Draw the geometry of helical antenna in normal mode and determine the value of axial ratio.	5M	C01	L2						
	b)	Draw the structure of Yagi-uda antenna and write its advantages.	5M	CO1	L2						
OR											
7		What are the different types of horns? Draw its structures and explain the construction procedure of pyramidal horn.	10M	C01	L3						
8	a)	Define the effective dielectric constant of microstrip antenna and Derive the equation for it	5M	CO1	L4						
	b)	Derive the equation for far fields of 90° corner reflector and draw its geometrical location and polarity of images.	5M	CO1	L4						
		OR									
9		What are the different feeding methods are there for microstrip antenna and explain them with neat diagrams.	10M	C01	L3						
10	a)	Explain the effects of earth curvature on wave propagation.	5M	CO3	L3						
	b)	How Multi path propagation will increase the coverage distance? Explain	5M	CO3	L4						
OR											
11		Draw and explain Ionosphere structure and how these layers are used for wave propagation.	10M	CO3	L3						

---00000---