

MARRI LAXMAN REDDY

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech II Sem Regular End Examination, June 2022

Digital Signal Processing (Electronics and Communication Engineering)

Time: 3 Hours. Note: 1. Question paper consists: Part-A and Part-B. Max. Marks: 70

- - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

1.	a)	Praw the block diagram of digital signal processing.		CO1	BL1
	b)	Discuss the need for multi-rate signal processing.	2M	CO1	BL2
	c)	Give the relation between DTFT, DFS and DFT.	2M	CO2	BL2
	d)	Find the 2-point DFT of the following sequence. $x(n) = \{1, 1\}$	2M	CO ₂	BL1
	e)	Discuss the necessity of analog filter approximations to design a digital filter.		CO3	BL2
	f)	List the types of methods to convert analog to digital IIR filters.	2M	CO3	BL1
	g)	Compare the features of IIR and FIR filters.	2M	CO4	BL2
	h)	Give the condition that need to be satisfied for an FIR filter to exhibit a linear phase characteristics.	2M	CO4	BL2
	i)	Discuss the stability of a digital system in both time and z-domains.	2M	CO5	BL2
	j)	Explain the effect of round-off noise in IIR digital filters.	2M	CO5	BL2

PART-B

(10*5 Marks = 50 Marks)

2	a)	Check the causality and stability of following discrete time systems.		CO1	BL1
		(i) $y(n) = (0.9)^n u(n)$ (ii) $y(n) = (2)^n u(n+1)$			
	b)	Define down sampling, up sampling, decimation and interpolation	5M	CO1	BL2
		with corresponding mathematical equations.			
		OR			

CO1 BL₂ 3 10M Find the frequency response $H(e^{jw})$ of the linear time invariant (LTI) whose input and output satisfy the following difference equation.

$$y[n] - \frac{1}{3}y[n-1] = x[n] + 4x[n-1] + 2x[n-2]$$

Co	Course Code: 1960420 Roll No:		M	MLRS-R19			
4	a)	State and prove the time circular convolution property of DF	Γ.	5M	CO2	BL1	
	b)	Find the convolution of the following two causal sequence overlap add method.	s using	5M	CO2	BL2	
		$h(n) = \left\{ -3, 2, -1 \right\} x(n) = \left\{ 2, 4, -4, -2, 2, -1, 1, 0, 1, -5, -7, 1, 2 \right\}$	2,4,-1				
_		OR	8				
5		Compute 8-point IDFT of the following sequence using DIT-FFT algorithm.	radix-2	10M	CO2	BL2	
		$X(k) = \{5, -j \ 2.414, 1, -j \ 0.414, 1, j \ 0.414, 1, j \ 2.414\}$					
6	a)	$k\Omega$, $C=0.1\mu F$. Convert this analog filter into a digital one	using a	5M	CO3	BL2	
	b)	Bilinear transformation method for a sampling frequency of 8 kHz. Write the steps to design IIR digital filters using bilinear transformation method.		5M	CO3	BL1	
		OR					
7		Design a digital IIR Butterworth filter for the following specifiusing impulse invariance method. Sampling frequency is 10 k $0.7943 \leq \left H(j\Omega)\right \leq 1 \qquad 0 \leq \Omega \leq 1 \text{ kHz}$		10M	CO3	BL3	
		$ H(j\Omega) \le 0.3159$ $2.5 kHz \le \Omega \le 5 kHz$	z				
8	a)	Explain the need for windowing in design of FIR filters. Comp features of different windows that will reduce the effect of phenomenon.	are the f Gibbs	5M	C04	BL1	
	b)	Give the design steps of an FIR filter using frequency sa method with considering an example.	mpling	5M	CO4	BL2	
		OR					
9		Design a digital FIR low pass filter using Hamming window following specifications.	for the	10M	CO4	BL2	
		$H(e^{jw}) = e^{-j7w}; -\pi/4 \le w \le \pi/4$ $0 ; \pi/4 \le w \le \pi$					
		$0 ; /_{4} \leq w \leq \pi$,				
10	a)	Write short notes on limit cycle oscillations and ovoscillations.	verflow	5M	CO5	BL1	
	b)	Illustrate the measurement methodology of coefficient quant effects through pole-zero movement.	ization	5M	CO5	BL2	
OR							
11		Draw the direct form-I structure of the following discret system. $y(n) = 0.2y(n-2) + 0.4y(n-1) + 5x(n) + 7.1x(n-1) + 0.9x(n-1)$		10M	CO5	BL2	