

MARRI LAXMAN REDDY E OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE. New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

III B. Tech II Sem Supply End Examination, January 2023 Signal and Systems

(Electrical and Electronics Engineering)

Time: 3 Hours.

Max. Marks: 70

- Note: 1. Question paper consists: Part-A and Part-B.
 - 2. In Part A, answer all questions which carries 20 marks.
 - 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	List the functions which can be used as orthogonal functions	2M	CO1	BL1
	b)	Write mathematical expressions for unit step and impulse function	2M	CO1	BL1
	c)	Find whether the signal x(t)=sin2t+a cos8t is periodic or not	2M	CO2	BL3
	d)	State Dirichlet's conditions	2M	C02	BL1
	e)	Compare signal bandwidth and system bandwidth	2M	CO3	BL2
	f)	Write the Paley-Wiener criteria for physical realization of system	2M	CO3	BL1
	g)	Define ROC significance in Laplace transform of the signal	2M	CO4	BL1
	h)	Write the relation between Laplace transform and Z-Transform.	2M	CO4	BL1
	i)	State the significance of sampling theorem.	2M	CO5	BL1
	j)	Define correlation operation.	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Derive the relation for mean square error when a signal is approximated by orthogonal functions.	5M	C01	BL6
	b)	Find the even and odd components of the step function u(t)	5M	CO1	BL3
		OR			
3		Write the mathematical expressions for unit impulse, unit step and signum function and show them graphically	10M	C01	BL1
4	a)	. Ato	5M	CO2	BL3
		Obtain the trigonometric Fourier series coefficients for the signal			
	b)	Find the Fourier transform of the signals $cosw_0t$ and $e^{-at}u(t)$	5M	CO2	BL3

Course Code: 1960403

Roll No:

MLRS-R19

OR

		OR			
5		Derive the relation between trigonometric Fourier series coefficient and exponential Fourier series coefficients	10M	CO2	BL6
6	,	system described by the difference equation $v(n)=0.5v(n-1)+2v(n)$	5M	CO3	BL3
	b)	Prove the conditions required for the distortion less transmission system	5M	CO3	BL3
		OR			
7		Find the output $y(t)$ of continuous time LTI system with impulse response $h(t)=e^{-2t}u(t)$ and input $e^{-2t}u(t)$.	10M	CO3	BL3
8	a)	List the properties of Laplace transform	5M	CO4	BL1
	b)	Determine the Z-transform and ROC of the signal $x(n)=[3(2^n)-4(3^n)]u(n)$	5M	CO4	BL3
		OR			
9		Find the Z-Transform of the signal $x[n]=(0.8)^nu[n]-(0.3)^nu[-n+1]$;	10M	CO4	BL3
4.0					
10	a)	Define autocorrelation and list the properties and prove them. Find power spectral density of autocorrelation $R_x(\tau)=25+\frac{4}{1+6\tau}$	5M	CO5	BL3
	b)	Explain the applications of correlation function in filtering	5M	CO5	BL4
		OR			
11		Find the power spectral density of the autocorrelation function is given by $R_x(t) = \begin{cases} 1 - t : -1 \le t \le 1 \\ 0 : otherwise \end{cases}$	10M	C05	BL3

---00000---