Course Code: 1960555 Roll No: MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech II Sem Regular End Examination, June 2022

Software Testing Methodologies

(Computer Science and Engineering/Information Technology)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	What is the purpose of testing?	2M	CO1	C2
	b)	Define self-blindness.	2M	CO1	C1
	c)	What is transaction flowgraph?	2M	CO2	C2
	d)	Give an example of data flow anomaly state graph.	2M	CO2	C3
	e)	Define KV Chart.	2M	CO3	C1
	f)	What are advantages of decision tables?	2M	CO3	C4
	g)	What is a state graph?	2M	CO4	C2
	h)	Define state-symbol product.	2M	CO4	C3
	i)	What is degree of a node?	2M	CO5	C1
	j)	Define idempotent generator.	2M	CO5	C3

PART-B

(10*5 Marks = 50 Marks)

		(10*5 Mai	Marks = 50 Marks)				
2	a)	Briefly explain about various kinds of loops.	5M	C01	C2		
	b)	What are goals and phases of testing? Explain.	5M	CO1	C1		
		OR					
3		Discuss about application and implementation of path testing.	10M	CO1	C3		
4	a)	How to test dataflow? Explain.	5M	CO2	C4		
	b)	Describe complications of transaction-flow testing.	5M	CO2	C3		
OR							
5		Explain about applications, tools and effectiveness of data-flow testing.	10M	CO2	C5		

Course Code: 1960555 Roll No:			MLRS-R19					
6	a)	Describe maximum path arithmetic count with example.	5M	CO3	C4			
	b)	Explain about test case design by decision tables.	5M	CO3	C2			
OR								
7		Discuss about a reduction procedure with suitable example.	10M	CO3	C3			
8	a)	Describe principles, limitations and extensions of state testing.	5M	CO4	C4			
	b)	Explain about inputs, transitions and outputs of state graphs.	5M	CO4	C2			
		OR						
9		Describe software implementation of state graph with example.	10M	CO4	C4			
10	a)	What are properties of relations? Explain in detail.	5M	CO5	C3			
	b)	Briefly explain about matrix representation software.	5M	CO5	C5			
		OR						
11		What are applications of graph matrices? Explain with suitable examples.	10M	CO5	C3			

---00000---