

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech II Sem Regular End Examination, June 2022

Principles of Compiler Construction (Information Technology)

Time: 3 Hours. Note: 1. Question paper consists: Part-A and Part-B.

Max. Marks: 70

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Write the regular definition and transition diagram for identifiers.	2M	CO1	BL1
	b)	What is the difference between pass and phase?	2M	CO1	BL1
	c)	What is top-down parsing?	2M	CO2	BL1
	d)	Define parsing.	2M	CO2	BL1
	e)	What is an intermediate code?	2M	CO3	BL1
	f)	What does L-attributed stand for in grammar?	2M	CO3	BL1
	g)	Define symbol table.	2M	CO4	BL1
	h)	Define flow graph.	2M	CO4	BL1
	i)	What is folding?	2M	CO5	BL1
	j)	What is machine-independent optimization?	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Discuss in detail about the role of lexical analyzer in a compiler.	5M	CO1	BL2
	b)	Convert the regular expression $R=(11+0)^*$ (00+1)* to finite automata.	5M	C01	BL6
		OR			
3		Show the output at all phases of the compiler for the following fragment of 'C' code: float a, b; a=a*70+b+2;	10M	CO1	BL3
4	a)	Give the classification of parsing techniques and briefly explain	5M	CO2	BL4

- - b) Design a CFG for the language L over {0,1} to generate all the strings CO2 BL₆ having alternate sequence of 0 and 1.

Course Code: 1961224 Roll No:			MLRS-	MLRS-R19				
5		Generate the SLR parsing table for the following grammar S→0S0 1S1 10	10M	CO2	BL6			
6	a)	What is syntax directed translation? How it is different from translation schemes? Explain with an example.	m 5M	CO3	BL2			
	b)	Explain how to generate three address codes with syntax directed definitions with an example.	d 5M	CO3	BL2			
OR								
7		Explain different types of intermediate codes forms and represent the following statement in different forms: $-(A+B)-(C+D)+(A+B+C)$	nt 10M	CO3	BL2			
8	a)	What are the Issues in the design of a code generator? Explain.	5M	C04	BL2			
	b)	Explain in brief about register allocation and assignment.						
	o,		5M	CO4	BL2			
9		Describe the rules to construct DAG and also construct the DAG for the following basic block. D=B*C E=A+B B=B*C A=E-D	10M	CO4	BL2			
10	a)	Explain about common sub expression and dead code elimination with an example.	5M	CO5	BL2			
	b)	Explain in brief about induction variables and reduction in strength	. 5M	CO5	BL2			
OR								
11		Explain in detail about Loop Optimization.	10M	CO5	BL2			

---00000---