

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech II Sem Regular End Examination, June 2022

Algorithms Design and Analysis (Information Technology)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Solve the average case time complexity of $f(n) = 3n(n^2 - n) + 2n + 5$	2M	CO1	BL3
	b)	Write the applications of Binary Search	2M	CO1	BL1
	c)	Write an algorithm of Find	2M	CO2	BL1
	d)	What is the constraint of n-queen problem	2M	CO2	BL1
	e)	What is principle of optimality	2M	CO3	BL1
	f)	What is the time complexity of Travelling sales person in dynamic programming	2M	CO3	BL1
	g)	What is feasible solution	2M	CO4	BL1
	h)	Write an algorithm of Greedy Knapsack problem	2M	CO4	BL1
	i)	Distinguish between P and NP	2M	CO5	BL2
	j)	What are the applications of Brach and Bound	2M	C05	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Explain about the Strassen's matrix multiplication	5M	C01	BL4
	b)	Solve the following recurrence relation	5M	CO1	BL3

$$T(n) = \begin{cases} 1 & \text{if } n = 0 \text{ or } n = 1 \\ \sqrt{\frac{1}{2}T^{2}(n-1) + \frac{1}{2}T^{2}(n-2) + n} & \text{otherwise} \end{cases}$$

OR

Write an algorithm of Merge sort and also analyze the time complexity of the same in all cases

10M CO1 BL5

Co	ours	se Code: 1961225 Roll N	0:	MLRS-R19		
4	a)	Explain how graph coloring problem	m is solved by using the	5M	CO2	BL4
	b)	Write an algorithm of Weighted Union		5M	CO2	BL1
	OR					
5		W= {15, 7, 20, 5, 18, 10, 13}, m=35. Find that sum to m by using sum of subsets. It space tree that is generated.		10M	CO2	BL3
6	a)	Explain about Reliability design		5M	C03	BL4
	b)	Write an algorithm of All pairs shortest	path	5M	CO3	BL1
	OR					
7		Design a three stage system with device are \$30, \$15, \$20 respectively. The cost more than \$105. The reliability of each of 0.5 respectively	of the system is to be no	10M	CO3	BL6
		0.5 respectively				
8	a)	Explain the single source shortest path v	with an example	5M	C04	BL4
	b)	Write an algorithm of Greedy Knapsack complexity of the same		5M	C04	BL5
OR						
9		Write an algorithm of Prims minimum c analyze the complexity of the same	ost spanning tree and also	10M	CO4	BL3
10	a)	Explain how to solve the Travelling Sale Branch and Bound method	s Person problem by using	5M -	C05	BL4
	b)	Write a Non deterministic algorithm of s	atisfiability problem	5M	CO5	BL1
			OR			
11		Draw the portion of the state space tree following knapsack instances: $n=5$, $(P_1, 4)$, $(W_1, W_2, W_3, W_4, W_5)=(4, 6, 3, 4, 2)$ a	P_2, P_3, P_4, P_5 = (10, 15, 6, 8,	10M	C05	BL3

---00000---