

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

III B.Tech II Sem Regular End Examination, June 2022

Design of Machine Members-II (Mechanical Engineering)

Time: 3 Hours.	Max. Marks: 70
Note: 1 Question paper consists: Part A and Part P	

lote: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- In Part B, answer any one question from each unit.
 Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	What is journal bearing? Give a classification of these bearings.	2M	CO1	L1
	b)	Write the basic modes of lubrication.	2M	CO1	L2
	c)	Distinguish between the static load carrying capacity and dynamic load carrying capacity of ball bearings.	2M	CO2	L3
	d)	Distinguish between rolling contact bearings and sliding contact bearings.	2M	C02	L3
	e)	Define Whipping stress.	2M	CO3	L3
	f)	What are the advantages of Aluminum piston over C.I. piston?	2M	CO3	L1
	g)	What is helical torsion spring? How does it differ from helical compression spring?	2M	CO4	L3
	h)	Explain the designation of V-belt with the help of example.	2M	CO4	L2
	i)	Why are crossed helical gears not used for high power transmission?	2M	CO5	L1
	j)	Write a short note on gear drives giving their merits and demerits.	2M	CO5	L2

PART-B

(10*5 Marks = 50 Marks)

2	a)	Explain the procedure would you follow while designing a journal bearing?	5M	CO1	L2
	b)	Each bearing of an electrical motor sustains a radial load of 4 kN. Assuming	5M	CO1	L3
		(l/d)ratio of 1.1, determine the length of the bearing, if the permissible bearing pressure islimited to 1 N / mm ² .			
		OR			
3		A Journal bearing with a diameter of 200 mm and length 150 mm carries a load of 20 kN when the journal speed is 150 rpm. The diametric ratio is 0.0015. If possible, the bearing is to operate at 35°C ambient temperatures without external cooling with a maximum oil temperature of 90°C. If external cooling is required, it is to be little as possible to minimize the required oil flow rate and heat exchanger size. i) What type of oil do you recommend?	10M	C01	L3
		ii) Will the bearing operate without external cooling?			
		iii) If the bearing operates without external cooling, determine the operating oil temperature.			

passing through the bearing.

a) A ball bearing subjected to a radial load of 4000 N is expected to have a

satisfactorvlife of 12000 hours at 720 r.p.m. with a reliability of 95%.

iv) If the bearing operates with external cooling, determine the amount of oil in kg/min required to carry away the excess heat generated over heat dissipated, when the oil temperature rises from 85°C to 90°C, when

Cour	se Code: 1960324 Roll No:	MLRS	-R19	
	selected from manufacturer'scatalogue based on 90% reliability. If there are four such bearings each with areliability of 95% in a system, what is the reliability of the complete system?			
b)	Explain how the following factors influence the life of a bearing: (i) Load (ii) Speed (iii) Temperature (iv) Reliability. OR	5M	CO2	L2
5	A shaft rotating at 1440 rpm is supported by two bearings. The forces acting on eachbearing are 6000N radial load and 3500 N axial thrust. If the shaft diameter is 40mm and the expected life of the bearing is 500h, select a suitable bearing if the required reliability of the bearing is to be 99 percent.	10M	C02	L3
6	Following data are given for the piston of a four-stroke diesel engine: Cylinder bore = 250 mm, Maximum gas pressure = 4 MPa, Allowable bearing pressure for skirt = 0.4 MPa, Ratio of side thrust on liner to maximum gas load on piston = 0.1, Width of top land = 45 mm, Width of ring grooves = 6 mm, Total number of piston rings = 4, Axial thickness of piston rings = 7 mm, Calculate: Length of skirt; and Length of piston OR	10M	CO3	L2
7	Determine the dimensions of an I – Section connecting rod for a petrol engine from the following data: Diameter of the piston = 110 mm, Mass of the reciprocating parts = 2 kg, Length of the connecting rod from centre to centre = 325 mm, Stroke length = 150 mm, Speed = 1500 rpm with possible over speed of 2500 rpm, Compression ratio= 4:1, Maximum explosion pressure = 2.5 N / mm ² .	10M	CO3	L2
8	A helical spring whose mean diameter of coils is 8 times that of the wire is to absorb 400 Nm of energy. The initial compression of the spring 50 mm and compresses by additional 70 mm while absorbing the shock. The maximum allowable stress is 400 MPa and $G = 0.084 \times 10^6 MPa$. Determine the diameter of the wire and the number of active turns. Neglect the effect of stress concentration.	10M	CO4	L2
9	Design a flat belt drive to transmit 110 kW at a belt speed of 25 m/s between twopulleys of diameters 250 mm and 400 mm having a pulley centre distance of 1 metre. The allowable belt stress is 8.5 Mpa and the belts are available having athickness towidth ratio of 0.1 and a material density of 1100 kg/m³. Given that the coefficient offriction between the belt and pulleys is 0.3, determine the minimum required belt width. What would be the necessary installation force between the pulley bearings and whatwill be the force between the pulley bearings when the full power is transmitted?	10M	CO4	L3
10	Design a pair of spur gear with stub teeth to transmit 55kW from 175 mm pinion running at 2500 rpm to a gear running at 1500 rpm. Both the gears are made of steelhaving B.H.N 260. Approximate the pitch by means of Lewis equation and then adjust the dimensions to keep within the limits set by the dynamic load and wear equation.	10M	CO5	L3
11	It is required to design a pair of spur gears with 20° full-depth involute teeth consisting of a 20 teeth pinion meshing with a 50 teeth gear. The pinion shaft is connected to a 22.5 KW, 1450 rpm electric motor. The starting torque of the motor can be taken as 150% of the rated torque. The material for the pinion is plain carbon steel Fe 410 (S_{ut}) = 410 N/mm²), while the gear is made of grey cast iron FG 200 (S_{ut}) = 200 N/mm²). The factor of safety is 1.5. Design the gears based on Lewis equation and using velocity factor to account for the dynamic load.	10M	CO5	L3

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

EXAMINATION BRANCH

Academic Year	2021-22
Year & Semester	III B. Tech II sem
Regulation	MLRS R-19
Branch	Mech
Course Code	196027 4
Course Name	Dmm-2
Course Faculty's	S.P. Jani
Course Moderator	S.P. Tani
Date of Exam	13/6/22
Reporting Time & Sign	8:40 pm. f.p.h.

KEY PAPER

QNO	ANSWER	MARKS
ba.	Journal Bearing is a machine element which support another moving machine element known as Journal.)
	Bearing - Though Bearing. - Sliding contact Rolling contact	1

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
رط	* Hydrodynamic Lusvidation	18
	A Hydrostatic lubrication	2
	+ Elestode hydrodymaniic lubrication	
	A solid film hubrication	
4	Static Load Carrying Caracity of ball bearing	
	It is defined as the static radial load	
	Or axial load which corresponds to a total permana	,)
	determation of the ball and race at the most	51,
	having stressed contact equal to 0.0001+inner	
	the ball dicemetred.	
	Dynamic load currying capacity of ball bearing.	- * h
ï	It is defined as the constant stationary radio	(
	load or axial load which't applied to a being	
	with rotating inner ving ad stationary outer rig	1
	would give the same life or that while the	
	bearing will attain under the actual conditions of loud and votation.	
	action in the second of the se	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
= ,		

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
e,	Whipping stress	
	The lateral Oscillations of the connecting	
	rod induce mertia forces that act all along	2
	the length of the connection rod carried bending this type of action is called whillingstress.	
1 ,	Aluminum Piston & CI Piston	
	Al alloy commonly yed for Pistony Pro	
	possessies a most important property in addition to lightness, namely low resistance to the	2
	Passage of heart.	
3,	Helical Torsion Spring	
	It is a metal rod or wive in the show	0
	a haling that is subjected to twisting	
	the axis of the boil by sidencys forces applied to its ends, twisting the will tighter.	2
4		Tel

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
h	V-belt in designated by a grade letter V-belt in designated by a grade letter followed by its inside legth in mm code number, year of codid. For Ex: D3048:Is 2491 1964: mostly belts are designated by the grade letter and inside legth only such as D-3048. Sometimes, the inside legth only legth may be denoted in inches as D-120	2
;)	The crossed helical gender hers lower formation Capacity due to point of contag	en t. 2
J)	Merits:- A litiency is very high A lities compact in construction A lit can be used even for low speedy There are not suitable when shorts are	1
	A It requestres slubrications A It has no flexibility.)

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	Part-B	
2·	Design OF Journal Bearing	
	+ Determine length by ving Ild raiso	
	A Check bearing pressure p= W/1.d	
V	* Assume lubricand, to.	
	* Determine the operating value of ZN/p	5
	for Assumed bearing Temporal Check this	
1	value with. * Assume a clearance ratio ald	
	A Determine In M	
	# Determine · Qg	
	+ Determine ad	9
	At Artificial Cooling Poute and mast.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
b	Crid W=4KN	
	= 4 x 103N	100
	$A = 1.1 \qquad A = 1.1 d + d$ $A = 1.1 d + d$	
	P=WA	ч
	$1 = \frac{4 \times 10^3}{1.1 d^2}$	
	$d^2 = 3636.36$	1
	d=60 mm $d=1.1$	
	1=1.1 x60 []=66.33mm	2
	J = 60°33 mm	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
3.	Design Produdure all Steps Should write.	
	D 111	
	O P=W/J.d	2
	$\frac{3}{p}$	2
	Bearing module	
	h, cld ratio	1
	5, $\mu = \frac{3}{10P} \left(\frac{2N}{P} \right) \left(\frac{1}{2N} \right) + k$	2
	6 Qg = LIWV	1
		1
	(9) Qd = C.A (tb-ta)	
	8 Artiticial boliz rate & mass	1
	Qt = mst	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
h,	CiD	
	W=hovon	
	N=720rpm	
- 1	LH = 12000 hours X = 1-5	
	Equivalent dymamic hoad	
	We=WXX	
4	= HODOXIVI	
	$\frac{L95}{490} = 0.0513 = 0.54$	
	L90 = 495 /0.54.	E.
	L9日= 多 81.45%	3
	C = W (Lgo) /k = 39.5 KN	2

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
可可	Loud	1
	The magnitude of load wouldy decides the	
	Size of bearing, cremenally roller beauting	
	Cour carry heavier loady than ball beariff)
	having the same extremal dimersions. Dear	
	groove ball beariff, cylindrical roller beariff	
: 53	are on expecially employed for radial londy.	
(ij)	Speed	at .
	For very high speed applications	
	generally deep groove ball bearing many)
	be preterend.	
(fi)	Temprature.	
	At Clevated temperature, the handness of	
	the bearing materials is reduced and	
	thus the dynamic load covering corpulity	١
	is also reduced as a consequence. The reduction in dynamic land covery capality	,
	at different tempilis taken into account for	
	determining the life rating of bearing.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
(11)	Res Reliability:	r _e rd . Ard
	The redicubility (R) indefined as the ratio of the number of bearing which have successfully completed & million revolution as the ratio of the number of bearings when test.	2
1	10ge (1/k) = (1/a)b L/cgo = 685 (logel1/h)] 1/117	
5)	Cr.D. N=1440 rPm	(f-ŋ
	WR = 6000N Wa = 3500N	2
	d = 40mm LH = 500h R= 99%.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	C= (L)/K END	2
	E = (Lgo) /K XVWR + YWA	2
7	DB-20.8 C= To Find correct bearing.	4
6)	D = 250mm	
	P = 4 mpa P x = 0-4 mpa Mr = 4	
	$t_2 = 0.7 t_1$ $= 4mm$ $b_1 = 1.2 t_1$	2
1,	1 = ?	
	L=?	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	$R = P_b \star D \star J$	N.
	RED'H XI (250)	
	= 04 x 250 xl	
	R=1001	4
	R= HTD2 XP)
	=0.1 x Tx(250)2 x4	
	R = 19634-95	
	19634.95 = 1001	17.1
	11=196-34mm	
5	L= 1 (4t2+3b2)+b1	
	b2 = 0-75t2	
	=0.75+7	4
	=5.25 mm	* 1 - 1 - 1
	L = 19634+ (4x7+3x5-25)+45	
	[L=285.09 mm]	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
7)	D- F	
	D=110mm	
	mr = 2kg	
	l = 325mm	2
	Stroke=150mm	
		,
<u> </u>	N1 = 1500 rpm	
	M2 = 2500 rpm	
	P = 2.5 N/mm2	
	T - 1119 11	
	$T_{xx} = \frac{419}{12} t^{2}$	
	Iyy=131 t4	
	Txx - 2.2	
	Tust = 3.2 Tyy	
154		
	$F_C = F_L = \frac{\pi}{4} \frac{D^2}{4} \times P$	
	4	
	= N x 110 x 2.1	
	4	
	FL = 23758-29 N	
	K SEDE = INCOL	
	A	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	= 419 th \tau 1 12	3
	= 1.48t	
	r = 150/2 = 75 mm	
	L=l= 325mm	
	23758.3 = OLA 1+a (L/kxx)	3
	= 320 x 112 1+1 (325) 7500 (1.78t)	
	$t = \frac{1}{2}$	
	B = 4+	
	H = 5+	
	H1 = 1.2 H H2 = 0.85 H	2

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
8,	$D_{\mathcal{U}} = C = 8$	
	V=400 N-m	
	= 400 × 103 wmm	
	y, = tomm	
- 1	y = 70mm	6
	42=4, ty	2
	$T = 400 \text{N/mm}^2$	
	Co = 84 x103 N/mm²	
	d=9	
	01 = 1. 12 n = 2	
	Energy oubsorsed	
	U = mean load x dittleetion	
	$= F_1 + F_2 \times Y'$	2
	$400\times10^{3} = F_{1}+F_{2}$ $\times70$	
	F1+F2 = 1142857 N	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO		ANSWER	MARKS
	F1 = F2 42		
	$\frac{F_1}{50} = \frac{F_2}{120}$		
	F1 = 0	417F2	6211
	-'. F2 = 8		1
	Marse	load Fz = 8.067	
		mux deflection y=120	way
	T = 8	Tol2	
	k=	1.18	2
		8 x 806 7 x103 x 8 x 1.18	
		Nd2	= 11 0
	d	= 55 mm	1
	D	= C+d	
		= 176 mm	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	$\frac{Y=8FD^3n}{Crd^4}$	
	$120 = 8 \times 8.067 \times 10^{3} \times 176^{3} \times 10^{3} \times $	
	$n = b \cdot 7$ $[n = 7]$	2
10,	P=55 KW =55x103W	
	N1=2500 PM N2=1500 PM d1=175 mm material-SBHN 260	1
	Step-1 a = ditax	2

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	$i = \frac{N_1}{N_2}$	
	Colonate dila Ft = Mt dila	
	$M_{t} = \frac{60 \times P}{2\pi M}$	
	$FD = F_t + KS + CV$ $V = Rd_1 n_1$, ,
	boxios	
	Step-2 material Selection	
Ĭ	Step-3 To Find module \$ Facewidth	
	ZI = 20 Assume.	2
25	Y' value asume.	E

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	Step-4 Check wear Streigth FW7FD	2
	Step-5 Dynamic Louel	2
	Fb>Fa Step-6	1
	Basic dimensions find.	
n,	Some like Problem (10) Follow the design Procedure	
	Joesign 1 100	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO		ANSWER	MARKS
5			
	1		
, 1			
8			7.7
			2
	,		1 21
	4,		