

Roll No:

MARRI LAXMAN REDDY STITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION) (Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

III B.Tech II Sem Regular End Examination, June 2022

Finite Element Methods (Mechanical Engineering)

Time: 3 Hours. Note: 1. Question paper consists: Part-A and Part-B.

2. In Part - A, answer all questions which carries 20 marks.

3. In Part – B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART-A

(10*2 Marks = 20 Marks)

Max. Marks: 70

1	2)	What are the important applications of finite element methods?	2M	CO1	BL2
1.		State the stress – displacement relations.	2M	CO1	BL1
	-	Write the Stiffness matrix for two noded truss element.	2M	CO2	BL2
	c)	Explain the significance of Hermite shape functions	2M	CO2	BL3
	d)	Write the plain stress functions for three noded triangular element	2M	CO3	BL3
	e)	What is the strain displacement relation matrix for axi-symmetric			
	f)		2M	CO3	BL2
	٠,	element?	2M	CO4	BL4
	g)	Write the similarities between conduction and convection.	2M	CO4	BL3
	h)	How convection is taken into account finite element formulation?		CO5	BL2
	i)	Write mass matrix for the stepped bar element.	2M		
	j)	Discuss about ANSYS software.	2M	CO5	BL3
	.,				

PART-B

(10*5 Marks = 50 Marks)

CO₂

CO2

3

3

2	a)	What is 1-D Linear element? How it is being analyzed in finite element	5M	CO1	BL2
	b)	analysis? Explain the general procedure of finite element analysis step by step with	5M	CO1	BL2
3		Suitable examples. OR Estimate the displacement vector, strains, stresses and reactions for following figure . Gap between end of the bar and wall is 2 mm. Take $E = 2 \times 10^5 \text{ N/mm}^2$ A = 300 mm ² 500 kN	10M	C01	BL4

A =300 mm ²	→ 500 kN	7E
◆50 0 mm	->500 m m	7

a) Explain the Hermite shape functions. A beam is fixed at one end and free at the other end, has a 20 kN

b) concentrated load applied at the end of beam having length of 10 m. Find 5M deflection and slope. Take I = 2500 cm⁴ and E = 20×10^6 N/cm².

Course Code: 1960327

The truss structure shown in figure 3 supports force F at Node 2. FEM is 10M CO2 used to analyze the structure using two truss elements as shown: assume $E = 2*10^5 N/mm^2$, $A = 1000 mm^2$, $L_2 = 50 mm$, $L_1 = 10 mm$ a) Compute the element stiffness matrices for both elements in the global coordinate system and b) Compute the stresses in the elements.

Fig:3

6	a)	Evaluate the integral $\int (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4) dx$ with the limits between -1 to +1 using (i) two point Gaussian quadrature and (ii)	5M	CO3	3
	b)	Analytical integration. Derive stress-strain relationship for 2-D CST element. OR	5M	CO3	3
7		Compute the strain displacement matrix and also the strains of a axisymmetric triangular element with the coordinates r_1 = 3 cm, z_1 = 4 cm, r_2 = 6 cm, z_2 = 5 cm, r_3 = 5 cm, z_3 = 8 cm. The nodal displacement values are u_1 = 0.01 mm, w_1 = 0.01 mm, u_2 = 0.01 mm, u_2 = -0.04 mm, u_3 = -0.03 mm, u_3 = 0.07 mm	10M	CO3	4
8	a)	Estimate the thermal force vector for the 1 D element subjected to end	5M	CO4	2
	b)	convection and heat flux. Derive the finite element equation for 1-D slab.	5M	CO4	3
9	-,	Estimate the temperature profile in a pin fin of diameter 30 mm, whose length is 500mm. The thermal conductivity of the fin material is 50 W/m K and heat transfer coefficient over the surface of the fin is $40 \text{ W/m}^2 \text{ K}$ at 30°C . The tip is insulated and the base is exposed to heat flux of $400 \text{ kW/m}^2\text{K}$.	10M	CO4	4
10)	Derive the consistent mass matrix for a 1-D bar element of freedom flexural beam element.	10M	CO5	2
11	l	Find the natural frequencies of longitudinal vibration for a constrained and unconstrained stepped bar as shown in the figure. Where $A_1 = 1000 \text{mm}^2$, $A_2 = 500 \text{mm}^2$, $L_1 = 150 \text{mm}$, $L_2 = 150 \text{mm}$, assume $E = young's$	10M	CO5	4

modulus, ρ = density

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

EXAMINATION BRANCH

Academic Year	2021-22
Year & Semester	II a IP
Regulation	R-19
Branch	Mechanical
Course Code	1960 327
Course Name	Finite Element Method.
Course Faculty's	P. Satya Koishna.
Course Moderator	P. Satya Koishna.
Date of Exam	20/6/22
Reporting Time & Sign	8:30 ≈ & .

KEY PAPER

QNO	ANSWER	MARKS
lA·a)	FEM is entensively used in field of structural mechanics and succenfly applied to so he other types of Engg: problems	2M.
	-> Geo mechanics -> Geo mechanics -> Civil Engg. -> fluid mechanics	
	Heat conduction - for thermal problems	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
b)	Strain Displacement relations: $E = \begin{bmatrix} B \end{bmatrix} \cdot \begin{bmatrix} Q \end{bmatrix}$ Nodal Displacement $E = \frac{dy}{dz} = \frac{d}{dz} \begin{bmatrix} N_1Q_1 + N_2Q_2 \end{bmatrix}$ $E = \begin{bmatrix} \frac{dN_1}{dz} \\ \frac{dN_2}{dz} \end{bmatrix} \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix}$	MARKS 2M
	$e = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$	
	$B = \frac{1}{\lambda} \begin{bmatrix} -1 & 1 \end{bmatrix}.$	
	$ \epsilon = \left[\epsilon_{\chi}, \epsilon_{\chi}, \epsilon_{\chi}, \gamma_{\chi}, \gamma_{\chi}, \gamma_{\chi} \right] $	
3)	K= AE Lon mt -lon -mt Lon -lon lt lon -lon -mt -lon -mt lon -mt -lon -	2M
1	Hermite functions are nothing but shape	
	functions in beam.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	write the formulae &	2M
•)	plane stress functions: plane stress is defined to be a state of stress in which normal stress(at) and shear stress in which normal stress(at) and shear stress (2) directed for to the plane are assumed	2M
	to be zero. loads act only in 2-4 plane and members are thin.	
F)	write the formulae for Strain - displacement	2M
-	matria formulae.	0
4)	Generalization $B = \frac{1}{2A} \begin{pmatrix} x_1 + \beta_1 + \gamma_1 \neq 0 & \frac{\alpha_2}{r} + \beta_2 + \frac{\gamma_2 + \gamma_3}{r} & 0 \\ 0 & \gamma_1 & 0 & \gamma_L \\ \gamma_1 & \beta_1 & \gamma_2 & \beta_2 \end{pmatrix}$	0
	0 7, 0 1	r ₃
	L, b, r, b	F3

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
g.	Cordiction: It is amechanism of heat transfer	
	from a region of high temp. to a region of within a medium or different me low temperature (Solid, liquid, god) or pure	dium in physical contact
	coorduction is found in solids only.	(2M)
U	Convection: It is possible in the prevence of	*
	fluid medium.	
h·	convection is taken has force end convection in Slab and outer surfaces in fin.	(Em)
- 1	mansmatrin (m) = (A) [2] - rom	1
	$m = \frac{\int AL}{2} \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right] -$	lumped
		•
i	Aways software: It is at FEM software and write its pros and cols. Adv. & Dis.	2m.

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

t: A boar and beam dered as ID elements. The at is known as linear as 2 Nodes; one at each	
t is known as linear	
t is known as linear	
+ is known as linear	
as 2 Nodes, one at each	
years containts of	
of Structure	
Nodel.	
is ast of sub-dividing	
a convinient number of	
	Hodes. Is ast of sub-dividing a convinient number of

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	warn bering of Nodes! In 1D each node is allowed to more only in Indirection hence each Node as one degree of	
	free dom.	
	A fix noded Element has Five degree of free dom.	5m
	Element Nodes.	
	12	
	2 3 3 4	
	(3) (4)	
	connectivity Table.	P. 1

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
6	step 1: Discretization of Structure: Art	
	of subdividing structure into convinient no. of	
	Calles Sements.	
	i, ID ii, 2D ii) 3D iv, Anisymm	ا ،د
	10 - baro, beam	
	20 - Triangular, Rectangular	
	30 - Tetrahedron, Herahedron	
	Anisymmetric! It is developed by sotating a triangle or quadrilateral about fixed	
	aais.	
	Step-2: Numbering of Nodes as Ele ments	-
	longer side numbering	
	Shorter side numbering	
	in FER we follow shorter site numbering to	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	reduce menny requirements	
	Step3: Selection of Displacement or Interpolation	
	function.	
	polynomial of linear, quadratic, and cubic	
	from are frequently used as displacement	
	functions.	5m
	step 4'. Define mat. behaviour wing strain.	
	displacement and strex-strain relationship)
	$e = \frac{dy}{dx}$	
	o-t.e.	
	Step 5 : Desivation of Element Stiffners and	
	Equipations. F = K: U	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	Step 6. Assemble the element equations to	
	obtain global cols:	
	Step 7: Applying BC/3	
	steps: Solution for un known displacement	
	step9: computation of Element Stresses and	
	step 9: computation of Elevien	34
	Strain.	
,	Step 10: Interpret the results.	
SA)	200 M 500 MN	
	E= 2 × 105 p/mm	
	8L = PL = SOON 10 x 500 = 5 mm.	
	hence the gap blo bar and wall is 2 mm.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	1 0 2 0 3	
	War in the second of the secon	
	Element 1 calculate Stiffners matrin.	
	$\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & & $	
	Element @ calculate stiffners matrix	
	Jen (2) les	6M
	Applying B.C.S.	
	$u_1 = 0$, $u_2 = 2mm$, $P = 500 \times 10^3 N$.	
	self wt. is neglected hence	
	$F_1 = F_2 = 0$, $F_2 = 500 \times 10^3 N$	
	alatate steers un know displacement valuels.	
	calculate strenes $\alpha = E \cdot \frac{dy}{dx}$. $Calculate$ Ca	
	0 = E(cl2-41), 02 = 12	

INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	Reaction Force (K)	
	= R= K. U - F.	419
	calculate Reaction forces and is equivalent	
	and opposite to applied force.	
4R)	a) Emplain Hermite Shape functions	
	write the formulae and derive N_1= 1 (m^3-3n^2Lt)	5M.
	the shape function) & N2 = 1/3 (7)-27/2	137
-	103 - 13 1-23+	3722)
. 6)	N4 = 13 (7)	3212)
	10 m.	
	Divide the beam into two elements.	
		-

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER 921 M2	MARKS
	Calculate DE	343
	slopes, vertical forces."	
	calculate stiffness equation	
	for Element () K= EI 6L -12 6L K= -6L 2V -12 -6L -12 -6L 6L 2V -6L 4V	
ě	$\begin{bmatrix} v_1 \\ v_2 \\ v_2 \\ v_3 \\ w_1 \\ f_{2y} \\ w_2 \end{bmatrix} = \begin{bmatrix} f_{1y} \\ w_1 \\ f_{2y} \\ w_2 \end{bmatrix}$] ?m
	Element (2)	
	Accemblen Stiffners matrin of OSQ	
	Apply 13.023.	
	colc. Displace mont, Slopes.	
		,

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
5A)	(10 (15°) (7543) 50mm.	
-40	E= 2×10 N/mm	
	$E = 2 \times 10^5 \text{N/mm}^{\frac{1}{2}}$ $A_7 = A_7 = 1000 \text{mm}^{\frac{1}{2}}$	
	12 = 50mm	
	li = 10 mm.	
	Element () le, = (2-4) + (42-41)	
	$l_1 = \frac{1-1}{l_1}$	
	m, = 42-4,	
	Elentent (2) (73-72) + (43-42)	
	$l_2 = \frac{x_3 - x_2}{ll_2}$, $m_2 = \frac{y_3 - y_2}{ll_2}$	
	· · · · · · · · · · · · · · · · · · ·	

ITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO		MARKS
	calculate Assemble d stiffness. $K_1 + K_2 \Rightarrow k_1 = A^{15}$, $k_1 + K_2 \Rightarrow k_1 = A^{15}$, $k_1 = 1000 \times 200$ $k_2 = 1000 \times 200$ $k_3 = 1000 \times 200$ $k_4 = 1000 \times 200$	
	Applying BCLS. Calculate Displacement and strends. $G_1 = E \left[-l_1 - m_1 l_1 m_7 \right] \left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array} \right]$ $G_2 = \left[\begin{array}{c} E \\ -l_2 \end{array} \right] \left[\begin{array}{c} -l_2 \end{array} \right] \left[\begin{array}{c} u_3 \\ u_4 \end{array} \right]$ $G_3 = \left[\begin{array}{c} E \\ -l_2 \end{array} \right] \left[\begin{array}{c} u_3 \\ u_4 \end{array} \right] \left[\begin{array}{c} u_4 \\ u_5 \end{array} \right]$	10M

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Dolhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
6A)	Dows.	
	0 = E.C.	
	$c = \frac{\delta}{\epsilon}$	5m.
8	Grens in a direction produces a positive strain	
	in a-direction	5
	or ela = ar	
	strucin y-dérection produces -re strain in	
	n-direction e'! = - Voy 9 - pouson's Ratio.	
	E	
	Similarly in Z-direction	
	- en = - 4 = E	
	Cn = \frac{9}{E} - \frac{199}{E} - \frac{199}{E} 199	e
	ey = - \(\frac{7}{E} + \frac{9}{E} - \frac{7}{E} \).	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
QNO	ANSWER $ \begin{array}{cccccccccccccccccccccccccccccccccc$	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
7A)	Stress = D.B.U.	
	Tre To D.B. Un Wh Un Un Un Un Un Un Un Un Un U	
	$D = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & v & 0 \\ v & 1-v & v & 0 \\ v & v & 1-v & 0 \\ 0 & 0 & 0 & 1-2v \\ 0 & 0 & 0 & 1 \end{bmatrix}$	
	$B = \frac{1}{2A} \left(\frac{\beta_1}{r} + \frac{r_1 + r_2}{r} \right) 0 \Delta 2 + \frac{\beta_2 + r_2 + r_2}{r} 0$ $0 r_1 0 r_2 r_3 r_4 r_4 r_4 r_5 r_6 r_6$	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad).

QNO	ANSWER	MARKS
	$\alpha_1 = {}^{r}2^{2}3 - {}^{r}3^{2}2$	=
	2 = 3 t 1 - 7 t 3	a a
	$\lambda_3 = \gamma_1 \frac{2}{2} - \gamma_2 \frac{2}{1}$	
,	3 = 72 - 73	8M
	B = 73-21	7,7
	13 = = = = = = = = = = = = = = = = = = =	
	r, = 23-82	
-	$r_2 = 8_1 - r_2$	
	rs = 82-81	
	Substitute (4, B, r,) (42 Br) (43 B3 r)	
	calculate various streves 2M	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
8 A)	b) consider 12 element $K_{c} = AK \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ $N = \begin{bmatrix} N, N_{c} \end{bmatrix} = \begin{bmatrix} 1-1 & 27 \\ 1 & 1 \end{bmatrix}$ $N = \begin{bmatrix} N, N_{c} \end{bmatrix} = \begin{bmatrix} 1-1 & 27 \\ 1 & 1 \end{bmatrix}$	7
	when $x = L$. $N = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $N^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ $\begin{bmatrix} K_n \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 \end{bmatrix}$. A.	
	$K = Kc + Kh$ $= Al \left(1 + 1 \right) + AA \left(0 + 1 \right)$	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER			
	(Fh.) end = h. Too. A. (Fh.) end = h. Too. A. [Fh.] end = h. Too. A.			
	F = K · T ·			
	$h.T_{\infty}.A\begin{bmatrix}0\\1\end{bmatrix} = \frac{AK}{L}\begin{bmatrix}1\\-1\end{bmatrix} + hA\begin{bmatrix}0\\0\end{bmatrix}$			
	$\begin{bmatrix} 7 \\ 52 \end{bmatrix}$	5M.		
	This is F.E equation for ID Slab.			

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO		MARKS
9A	Discritere the pin into $\frac{h=40}{1}$ $\frac{7_0=30^{\circ}c}{1}$ two elements	30mm.
	element $q = 400 \text{ kw} \text{m}^2 \text{k}$ FE is for what I. AL [1-1] + hPl, $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 7 \\ 12 \end{bmatrix}$ = $\begin{bmatrix} 7 \\ 12 \end{bmatrix}$	(SM)
	DAL, + Photi. 2 The second of the second o	9
20	A = TIVE TI (30). Calculate F.E for Ande 2.	
	Assemble the Finite Element eautim for Element (1) and (2)	(5 m)
	calculate temp. distribution values.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
104)	For bar Element: $N_1 = 1 - \frac{9}{4}$, $N_2 = \frac{9}{4}$.	
	m= J J NT. N.dv	
	= PA S(N) . (N, N) dn.	
	$=\int_{0}^{\infty}\int_{0}^{\infty}\left(1-\frac{x}{\lambda}\right)^{2}\frac{x^{2}-\frac{x^{2}}{\lambda^{2}}}{1-\frac{x^{2}}{\lambda^{2}}}dx.$	5m.
	= 10 $42-1/3$ $42-1/3$ $42-1/3$ 415	
-	$= \frac{1}{6} \left(\frac{2}{1} \right) \frac{1}{2}$	
4	For Beam Element:	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	$N_1 = 1 - \frac{3x^2}{\ell^2} + \frac{2x^3}{\ell^3}$	
	$N_2 = n - \frac{2n^2}{L} + \frac{x^3}{L^2}$	
	$N_3 = \frac{3\pi^2}{l^2} - \frac{2\pi^3}{l^3}$	
	$N_{c} = -\frac{x^2}{L} + \frac{x^3}{L^2}$	
	m = J. l. N. dv.	
	- JA MAN [N, N2 N3 N4] dn.	
-	Substitute N, N2, N3, N4 values and	
	perform integration., the beam dement	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	mans matrin. a) $M = \frac{141}{420} \begin{cases} 156 & 221 & 59 \\ 221 & 41 \end{cases} 121 - 31 \\ \hline 420 & 59 & 131 \\ \hline -131 & -31 & -221 \\ \hline -131 & -31 & -221 \\ \hline \end{pmatrix}$	
11A)	Natural frequency for un constrained bar	
	$A_1 = 1000 \text{mm}^2$ $A_2 = 500 \text{mm}^2$ $A_1 = 42$	
	E = 2 × 105 N/mm } Assurption.	
	K,= AE, [] Colombate for Element O	
	$M_1 = \frac{P_1 A_1 L_1}{6} \left(\frac{2}{1} \frac{1}{2} \right).$	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	Calculate for Element (2) $K_2 = \frac{A_2E_2}{L_1} \left(\begin{array}{c} 1 & -1 \\ -1 & 1 \end{array} \right)$	
	$M_2 = \frac{2 + 2 \cdot 2}{6}$	
	Assemble the Stiffners and maximation for Element (1) & (2) and substitute in dynamic eq. (K - od. m). U = 0.	2 m
	Applying B. is and calculate. 12 values. from 1 calculate & values.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	Natural frequency for constrained Bar	-
	A ₁ A ₂	
	calculate K, M, (Stiffners, mars matrix)	
	for Element (1),	
	calculate Kz, Mz (Stiffners, mars matrix)	
	for Element 2.	
	Assemble the stiffners and mars matrix	
	for Element (1) and (2)	
	Apply B.Ch.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO	ANSWER	MARKS
	substitute the Assembled stiffness and maximation values in dynamic Equation	n
	$\left[k-\omega^2, m\right] \cdot u = 0.$	
	Apply Bick u=0.	5M
	calculate & values and a values. where 1- Figenvalues	
-	where ~ natural from every.	

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

QNO		ANSWEI	₹		MARKS
	hara Majki			31.4441.6	
	4 - 3,				
					3