

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

IV B.Tech I Sem Regular End Examination, November 2022 Estimation, Costing and Project Management (CIVIL)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a·)	Explain Plinth area estimation.	2M	CO1	BL 2
	b)	Write the units of measurement of the following items of work. (a) Earth work excavation (b) R.C.C for footings (c) Masonry Work. (d) Plastering	2M	CO1	BL 1
	c)	Explain the terms lead and lift for the formation of roads	2M	CO2	BL 2
	d)	Find the volume of earth work in road embankment of length 100m top width is 7.0m, depth 3.5m and side slopes 2:1.	2M	CO2	BL 3
	e)	Explain about the uses of standards measurement book.	2M	CO3	BL 2
	f)	Mention general specifications for flooring of a 1st class building.	2M	CO3	BL 1
	g)	What is meant by depreciation?	2M	CO4	BL 1
	h)	What are the different purposes for which the valuation is undertaken?	2M	CO4	BL 2
	i)	Define (a) event and (b) critical path.	2M	CO5	BL 2
	j)	Explain briefly the necessity of construction schedule.	2M	CO5	BL 3

PART-B

(10*5 Marks = 50 Marks)

2	a)	Differentiate between detailed estimate and abstract estimate	5M	CO1	BL 2
	b)	Describe general items of works for building construction.	5M	CO1	BL 2

3 a) Calculate the quantity of earth work excavation for foundation. For the 5M CO1 BL5 following Figure.1

Figure . 1

- b) Calculate the quantity of RR masonry required for foundation and plinth, for 5M CO1 the Figure.1
- 4 a) The contour levels and contour areas of a depression are given below. The 5M CO2 BL 5 bed level of the depression is at 80 m contour and is to be filled up to 86m.

Calculate the	earthw	ork qu	lanuity L	by using	Trapezo	nual rule.	
Contour level in m	80	81	82	83	84	85	86
Area of contour in sa.m	88	94	100	108	120	132	140

b) Prepare Bar Bending Schedule and estimate the quantity required for a simply supported beam shown in the below figure, take end cover as 25 mm.

Top and Bottom reinforcement are 2 No's of 20mm diameter

OR

5 a) Explain "Trapezoidal rule" and "Prismoidal rule" with usual notations

b) Prepare Bar Bending Schedule and estimate the quantity of stirrups of 6 mm dia for a column of size 300 mm × 300 mm. The spacing of stirrups is 210 mm c/c, total height of column is 3.3 m and unit wt of rod is 0·23 kg/m. Take Concrete cover is 40 mm.

5M CO2 BL 2

BL 5

CO2 BL6

5M

5M CO2 BL6

			Course Code: 1970127	Roll No:	MLRS-R19			
6	5	a)	Give the purpose, requirement	ts and importance of rat	te analysis.	5M	CO3	BL 4
		b)	Work out the rate analysis of t 1. 230 mm wall in CM 1:2 m		ht 3.0 m and length 3.0	5M	CO3	BL 5
			Cement Plaster 12 mm and length 3.0 m	thick in CM 1:3 on grou	nd floor of height 3.0 m			
				OR				
7	,	a)	Calculate the rate for a one and length = 20 m, height = 3.3 m a SSR.			5M	CO3	BL 5
		b)	Calculate the rate for 1 m ³ of co	ement concrete of 1:1.5	:3	5M	CO3	BL 5
8	3	a)	Explain types of contract.			5M	CO4	BL 2
		b)	Differentiate between Salvage	Value and Scrap Value.		5M	CO4	BL 3
				OR				
9) ;	a)	Describe the detailed specifica	tions of RCC slab (1:2:4), DPC (1:1.5:3)	5M	CO4	BL 2
	1	b)	Explain various steps involved	in tender system.		5M	CO4	BL 2
1	0 8	a)	Write the limitations of Gantt	chart and explain in deta	ail.	5M	CO5	BL 1
	1	b)	Write the advantages of CPM n	etwork in execution of	a project.	5M	CO5	BL 3

OR

The following project has eight activities and the expected time of each 10M CO5 BL 6 activity is given below

Activity	1 - 2	1-3	1 - 4	2 - 5	3 – 5	4 - 6	5 – 7	6 – 7
Expected time in days	2	3	5	4	3	2	2	3

(a) Draw network diagram;

(b) Identify the critical path.

(c) Draw the table showing EST, LST, EFT and float.

---00000----

CO-Course Outcome

BL - Blooms Taxonomy Levels