Course Code: 1970499 Roll No: MLRS-R19

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

IV B.Tech I Sem Regular End Examination, Nov/Dec 2022 Digital Image Processing (PE-III)

(ECE)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Write the expression to find the number of bits to store a digital image? Also Find the number of bits required to store a 256 X 256 image with 32 gray levels.	2M	C01	BL3
	b)	Write the Walsh transform forward and reverse kernels.	2M	CO1	BL1
	c)	Define histogram? And how it is useful for image enhancement.	2M	CO2	BL2
	d)	What is the difference between spatial and frequency domain in filtering used in image enhancement.			BL2
	e)	Compare image enhancement and restoration techniques?	2M	CO3	BL2
1	f)	Give the relation for degradation model for continuous function?	2M	CO3	BL1
	g)	Write the applications of segmentation.	2M	CO4	BL1
]	h)	List the various methods of thresholding in image Segmentation.	2M	CO4	BL1
į	i)	What is the Need for Compression?	2M	CO5	BL1
j	j)	State fidelity criterion & list its types.	2M	CO5	BL1

PART-B

(10*5 Marks = 50 Marks)

2	a)	Explain the steps involved in digital image processing with neat diagram.	5M	CO1	BL2					
	b)	Construct the slant transform matrix for N=8.	5M	CO1	BL3					
OR										
3	a)	State and prove the separability property of the 2D-DFT.	5M	CO1	BL2					
	b)	Demonstrate the various distance measures between the pixels with an example.	5M	CO1	BL2					
4 a	a)	Explain the various filters used for sharpening of image in frequency domain.	5M	CO2	BL3					
	b)	What is high boost spatial filtering? Compare it with high pass spatial filtering	5M	CO2	BL2					

5	a)	i)Bit plane slicing (ii) Grey level slicing.					CO2	BL3		
	b)						CO2	BL6		
6	a)	Explain the method of Constrained Least Squares Filtering for image restoration					CO3	BL3		
	b)	Discuss the process of image restoration by direct inverse filtering?					CO3	BL3		
OR										
7	a)	Explain about image degradation model with algebraic approach.				5M	CO3	BL3		
	b)	Discuss the interactive		_		5M	CO3	BL2		
	U)	Discuss the interactive	restorati	on or an image.		51-1	000	DUL		
								D. C		
8	a)				5M	CO4	BL2			
	b)	Determine the importance of Hit-or-Miss morphological transformation operation on a digital binary image				5M	CO4	BL5		
		transformation operati	ion on a u	OR	ge					
			10		C1 +41 - 1	5 1.	00.4	D		
9	a)	Describe the Region Splitting and Merging method with an example			5M	CO4	BL5			
	b)	b) Explain the opening operation in image morphology with examples				5M	CO4	BL5		
10	a)	a) Write a short note on JPEG 2000 standardsb) Draw the block diagram of image compression system. Discuss each				5M	CO5	BL2		
	b)					5M	CO5	BL3		
		block detail.								
				OR						
11	a)	Develop an arithmetic "aaieuo!"	code for a	a given data and	message sequence:	5M	CO5	BL6		
		Sy	mbol	Probability						
			a	0.2						
			e i	0.3						
			0	0.2						
			u	0.1	9					
			!	0.1						

Roll No:

---00000---

CO - Course Outcome

b) Explain how compression is achieved using DCT.

Course Code: 1970499

BL - Blooms Taxonomy Levels

5M CO5 BL5

MLRS-R19