Fina: 10.12.202

Course Code: 2010008 Roll No:

MLRS-R20



## MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad) Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

## I B.Tech I Sem Supply End Examination, December 2021

**ENGINEERING CHEMISTRY** (EEE, CSE, CSM, CSI & INF)

Max. Marks: 70 Time: 3 Hours.

Note: 1. Answer any FIVE questions. 2. Each question carries 7 marks.

| 1 | a) | Explain the $\pi$ - molecular orbital diagram of 1,3-butadiene.                                                                                                                                                                     | 7M    | CO1  | L2 |  |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|----|--|
|   | b) | What are the salient features of crystal field splitting theory.                                                                                                                                                                    | 7M    | CO 1 | L1 |  |
|   |    |                                                                                                                                                                                                                                     |       |      |    |  |
| 2 | a) | Explain the postulates of Molecular Orbital Theory.                                                                                                                                                                                 | 7M    | CO1  | L1 |  |
|   | b) | Write the crystal field splitting of d-orbitals in tetrahedral and square planar complexes.                                                                                                                                         | 7M    | CO1  | L2 |  |
|   |    | A second of vector contains following impurities: Mg(HCO-) = 84 mg/l                                                                                                                                                                |       |      |    |  |
| 3 | a) | A sample of water contains following impurities: $Mg(HCO_3)_2 = 84 \text{ mg/L}$ , $MgCl_2 = 76 \text{ mg/L}$ , $CaCO_3 = 30 \text{ mg/L}$ , $SiO2 = 1.36 \text{ mg/L}$ calculate temporary, permanent and total hardness of water. | 7M    | CO2  | L2 |  |
|   | b) | What is Causticem brittlement? Explain How to control it.                                                                                                                                                                           | 7M    | CO2  | L3 |  |
|   |    |                                                                                                                                                                                                                                     |       |      |    |  |
| 4 | a) | What are reference electrodes? Describe construction of calomel electrode.                                                                                                                                                          | 7M    | CO3  | L2 |  |
|   | b) | What is Electrochemial corrosion? Explain its mechanism.                                                                                                                                                                            | 7M    | CO3  | L1 |  |
|   |    |                                                                                                                                                                                                                                     |       |      |    |  |
| 5 | a) | Discuss the principle of EDTA complexometric method for determination of hardness of water.                                                                                                                                         | 7M    | CO2  | L2 |  |
|   | b) | Explain the construction and working of lead-acid battery.                                                                                                                                                                          | 7M    | CO3  | L2 |  |
|   |    |                                                                                                                                                                                                                                     |       |      |    |  |
| 6 | a) | Write sawhorse, Fischer and Newman projections of 1-bromo butan-2-ol.                                                                                                                                                               | 7M    | CO4  | L3 |  |
|   | b) | Describe Markownikoff and anti Markownikoff's rule with suitable example.                                                                                                                                                           | 7M    | CO4  | L2 |  |
|   |    | What is conformational isomerism? Discuss conformational analysis of                                                                                                                                                                | 7M    | CO4  | L1 |  |
| 7 | a) | n- butane.                                                                                                                                                                                                                          | / IVI | 004  | LL |  |
|   | b) | What type of electronic transitions can occur when molecule absorb energy in UV- visible region?                                                                                                                                    | 7M    | CO5  | L2 |  |
| 8 | 2) | Describe the principle of NMR spectroscopy.                                                                                                                                                                                         | 7M    | C05  | L1 |  |
| O | a) | What are the applications of IR spectroscopy?                                                                                                                                                                                       | 7M    | CO5  | L2 |  |
|   | b) | what are the applications of its spectroscopy:                                                                                                                                                                                      | , 1.1 | 000  |    |  |

