

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEME

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.Tech I Sem Supply End Examination, October 2022

Engineering Mathematics -I

(Common to all branches)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

MLRS-R20

1. a)	Define normal form of a matrix.	2M	CO1	BL1
b)	Find the rank of the matrix $\begin{bmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 9 \\ 1 & 3 & 4 & 1 \end{bmatrix}$	2M	C01	BL3
c)	Define quadratic form of a matrix	2M	CO2	BL1
d)	Define Eigen vector.	2M	CO2	BL1
e)	State Cauchy mean value theorem.	2M	CO3	BL1
f)	Compute $\frac{\Gamma(6)}{2\Gamma(3)}$	2M	CO3	BL3
g)	If $u = x^2 - y^2$, $x = 2r - 3s + 4$, $y = -r + 8s - 5$. Find $\frac{\partial u}{\partial s}$.	2M	CO4	BL3
h)	Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ if $u(x, y) = x^3 y + 3y^4$	2M	CO4	BL3
i)	Change the order of integration in the integral $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dy dx$	2M	CO5	BL3
j)	Evaluate $\int_{1}^{2} \int_{3}^{4} (xy + e^{y}) dydx$	2M	CO5	BL5

PART-B

(10*5 Marks = 50 Marks)

2 a) Use Gauss-Jordan method to find the inverse of the matrix
$$\begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$
. 5M CO1 BL b) Solve the system of equations $x + y + z = 11$; $2x - 6y - z = 0$; $3x + 4y + 2z = 0$ OR

3 For the matrix $A = \begin{bmatrix} 1 & 3 & 6 & -1 \\ 1 & 4 & 5 & 1 \\ 1 & 5 & 4 & 3 \end{bmatrix}$. Find non-singular matrices P and Q such that PAQ is in normal form. Hence find its rank.

C	Cada	2010001	
Course	Loge:	2010001	L

4	a)	If λ be an eigen value of a non-singular matrix A , show that λ^{-1} is an	5M	CO2	BL			
	b)	eigen value of A^{-1} . Find the eigen vectors of the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$	5M	CO2	BL			
		OR						
5		Find the matrix <i>P</i> which diagonalizes the matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$. Verify	10M	CO2	BL			
		that $P^{-1}AP = D$, where D is a diagonal matrix. Hence find A^6 .						
6	a)	Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$	5M	CO3	BL			
	b)	Verify the Lagrange mean value theorem for $f(x) = \cos x$ in $(0, \pi/2)$	5M	CO3	BL			
		OR						
7		Prove that $\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$	10M	CO3	BL			
8	a)	Verify Euler's theorem for the function $xy + yz + zx$.	5M	CO4	BL			
	b)	Find the maximum and minimum values of $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$	5M	CO4	BL			
$\int (x,y) = x + 3xy - 13x - 13y + 72x$ OR								
		Prove that the functions $u = x + y + z$, $v = xy + yz + zx$,						
9		$w = x^2 + y^2 + z^2$ are functionally dependent and find the relation	10M	CO4	BL			
		between them.						
10	a)	Evaluate $\iint_R y dx dy$, where R is the region bounded by the	5M	CO5	BL			
		parabolas $y^2 = 4x$ and $x^2 = 4y$	5M	CO5	BL			
	b)	Evaluate $\int_{-1/2}^{1} \int_{0}^{1+x} (x^2 + y) \ dy dx$	JIVI	003	DL			

---00000---

Evaluate $\iiint xyzdxdydz$ over the positive octant of the sphere $x^2+y^2+z^2=a^2$.

OR

CO: Course Outcome

11

BL: Blooms Taxonomy Levels

10M

CO5

BL