

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.Tech I Sem Supply End Examination, October 2022

Applied Physics

(ECE, CSC, CSD)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit.
 Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	Define Photoelectric effect and mention its importance.	2M	CO1	R
	b)	Explain the de-Broglie's hypothesis.	2M	CO1	U
	c)	Distinguish between Intrinsic and Extrinsic semiconductors.	2M	CO2	An
	d)	Sketch the p-n junction diode's V-I Characteristics.	2M	CO2	Ap
	e)	List the properties of Solar Cell.	2M	CO3	R
	f)	Name the material that is used in the PIN diode.	2M	CO3	U
	g)	Justify your answer why population inversion is necessary for lasing	2M	CO4	An
	h)	action. Define Acceptance angle and relate the expressions of acceptance angle and numerical aperture.	2M	CO4	U
	i)	Define Permittivity and mention its importance in dielectrics.	2M	CO5	R
	j)	Illustrate Hysteresis in magnetic materials.	2M	CO5	U

PART-B

(10*5 Marks = 50 Marks)

2	a)	Describe the Davisson and Germer experiment with the help of neat	5M	CO1	U
	b)	sketch. Apply the concept of wave particle duality to the material particle and obtain the Schrodinger's time independent wave equation for it.	5M	CO1	Ар
		OR			
3	a)	Consider a particle of mass 'm' trapped in one dimensional box of infinite depth. Employ the steady state Schrodinger's wave equation	5M	CO1	An
	b)	to obtain permissible energy states of the particle. Obtain de-Broglie wavelength for an electron in terms of its kinetic energy. Calculate the de-Broglie wavelength of an electron whose	5M	C01	Ap
		kinetic energy is 10eV.			

Course Code: 2010006 Roll No: MLRS-R20

4	a)	Differentiate between diffusion current and drift current.	5M	CO2	An
	b)	Interpret the working of Zener diode and its V-I Characteristics with the help of necessary diagrams.	5M	CO2	An
		OR			
5		Interpret the principle of operation, Construction and working of Bipolar Junction Transistor (BJT) along with its characteristics with the help of necessary diagrams.	10M	CO2	Е
6	a)	Compare the Radiative and non-radiative recombination	5M	CO3	An
	b)	mechanisms in semiconductors. Describe the structure, Characteristics and figures of merit of LED with suitable figures.	5M	CO3	U
		OR			
7		Interpret the working principle, construction and working of Avalanche photodiode along with its characteristics with the help of necessary diagrams. Mention its merits and demerits.	10M	CO3	An
8	a)	Differentiate between spontaneous and stimulated emissions. Illustrate the energy level diagram indicating various radiation transitions occurred in He-Ne laser.	5M	CO4	Ар
	b)	Illustrate the vibrational energy level diagram indicating various radiation transitions occurred due to various modes of vibrations in Ruby laser.	5M	CO4	Ap
		OR			
9	a)	Discuss the various types of losses occur during data transmission through optical fibre with the help of appropriate diagrams.	5M	CO4	An
	b)	Calculate the numerical aperture and acceptance angle of given optical fibre, if the core and cladding refractive indices are 1.55 &	5M	CO4	Е
		1.5			
		P	5M	CO5	An
10	a)	Distinguish between Ferroelectrics and Piezoelectrics.	5M	CO5	
	b)	Define below terms: i) dielectric constant ii) Polarization	SM	003	Ар
		iii) Electric dipole			
		OR	5M	CO5	An
11	a)	Illustrate the various kinds of magnetic materials with their alignment of magnetic domains.	JIVI	003	AIII
	b)	List the various applications of magnetic materials and explain them.	5M	CO5	U

---00000---