SET 1

MLRS-R20

Course Code: 2020111 MARRI L. INSTITUTE OF (Approved by A. (Approved by A. **MARRI LAXMAN REDDY UTE OF TECHNOLOGY AND MANAGEMENT**

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)

Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.Tech II Sem Regular End Examination, September 2021 **Engineering Mechanics** (CIVIL)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Explain the system of forces?	7M	CO1	BL1
	b)	Two forces of 100 N and 150 N are acting simultaneously at a point. What is the resultant of these two forces, if the angle between them is 45°?	7M	CO1	BL1
SI	oe!	Politi Parellelogram			
2	a)	Explain the polygon law of forces?	7M	CO1	BL1
	b)	The following forces act at appoint: (i)20N inclined at 30° towards North of East (ii)25N towards North (iii) 30N towards North West and (iv) 3 N inclined at 40° towards South of West Find the magnitude and direction of the resultant force.	7M	CO1	BL3
			-		
3	a)	Explain the terms: (i) Coefficient of friction (ii) laws of friction.	7M	CO2	BL1
	b)	Describe he equilibrium of a body on a rough inclined plane.	7M	CO2	BL2
4	a)	Explain the working of simple screw jack?	7M	CO2	BL1
	b)	Find the horizontal force required to drag a body of weight 100 N along a horizonal plane. If the plane, when gradually raised up to 15°, the body will begin to slide.	7M	CO3	BL4
5	a)	Define the centroid? Explain briefly how do you find the centre of gravity of a plane figure.	7M	CO3	BL1
7-	b)	Find the centre of gravity of a 100 mm x 150 mm x 30 mm t - section.	7M	CO3	BL3
5	a)	State and prove the perpendicular axis theorem applied to moment of inertia.	7M	CO4	BL1
	b)	Find the moment of inertia of a rectangular section 30 mm wide and 40 mm deep about X-X axis and Y-Y axis.	7M	CO4	BL3

7	a)	Describe the method of finding out the moment of inertia of a composite section.	7M	CO4	BL3
	b)	Describe the types of motion?	7M	C05	BL2
8	a)	Explain about the D'Alembert's Principle?	7M	C05	BL3

---00000---

BL - Blooms Taxonomy Levels

Note: 1. Font style: Cambria.

2. Bloom's Taxonomy Level (BL) shall be mentioned for each question.

Dr. G. Suryaprakosh Rew Mechanical Engineerin