

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.TECH II Sem Regular End Examination, September 2021 Engineering Mathematics-II

Engineering Mathematics-II (BRANCHES)

Time: 3 Hours.

Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	$Solve(e^y + 1)\cos x dx + e^y \sin x dy = 0.$	7M	CO1	BL3
	b)	Solve $y(x^2y^2 + 2)dx + x(2 - 2x^2y^2)dy = 0$.	7M	CO1	BL3
2	a)	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	7M	CO1	BL3
	b)	A body is originally at $80^{\circ}C$ and cools down to $60^{\circ}C$ in 20 minutes. If the temperature of the air is $40^{\circ}C$, find the temperature of the body after 40 minutes.	7M	CO1	BL1
3	a)	Solve $(D^2 + 5D + 6)y = 0$.	.7M	CO2	BL3
		Solve $(D^2 - 4D + 13)y = e^{2x}$.	7M ·	CO2	BL3
4	a)	Solve $ \left(x^2D^2 + xD - 4\right)y = 0. $	7M	CO2	BL3
	b)	Solve $\frac{d^2y}{dx^2} + y = \cos ecx$ by the variation of parameters method.	7M	CO3	BL3
5	4	For what values of x the following series is convergent $x - \frac{x^2}{2^2} + \frac{x^3}{3^2} - \frac{x^4}{4^2} + \dots$	14M	CO3	BL4
6	a)	If $\hat{r} = x \hat{i} + y \hat{j} + z \hat{k}$ then find ∇r^n .	7M	CO4	BL1
	b)	Prove that the vector field $\hat{F} = 3y^4z^2\hat{i} + 4x^3z^2\hat{j} - 3x^2y^2\hat{k}$ is solenoidal.	7M	CO4	BL2
7		Prove that $\nabla \times (\nabla \times \widehat{A}) = \nabla (\nabla \cdot \widehat{A}) - \nabla^2 \widehat{A}$.	14M	CO4	BL2
8	a)	Evaluate the line integral $\int_C (x+y^2) d\hat{r}$, where C is the parabola $y=x^2$ in	7M	CO5	BL6
		the plane $z = 0$ connecting the points $(0,0,0)$ and $(1,1,0)$.		•	
	b)	Evaluate by Green's theorem $\oint_c (y - \sin x) dx + \cos x dy$ where c is the triangle	⁻ 7M	CO5	BL6