

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act, 1956

I B.TECH II Sem Supply End Examination, March 2022

Engineering Mathematics-II (Common to all branches)

Time: 3 Hours. Max. Marks: 70

Note: 1. Answer any FIVE questions.

2. Each question carries 14 marks and may have a, b as sub questions.

1	a)	Solve $(y^2 - x^2)dx + 2xydy=0$.	7M	CO1	BL3
	b)	Solve $x^2y dx - (x^3 + y^3) dy = 0$.	7M	CO1	BL3
2	a)	Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$	7M	CO1	BL3
	b)	The number N of bacteria in a culture grow at a rate proportional to N . The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}$ hours	7M	CO1	BL3
3	a)	Solve $(D^2 + 6D + 9)y = 0$	7M	CO2	BL3
	b)	Solve $(D^2 + 3D + 2)y = \sin 3x$	7M	CO2	BL3
4		Solve $(D^2 + 4)y = \sec 2x$ by the variation of parameters method	14M	CO2	BL3
5	a)	Change the order of integration and evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy.$	7M	C03	BL5
	b)	Evaluate $\iint_R x^2 y^2 z \ dx \ dy \ dz$, where R is the region bounded by the surfaces $x^2+y^2 \le 1$, $0 \le z \le 1$	7M	CO3	BL5
6	a)	Find the unit normal vector of the surface x2y+2yz-1 at the point (1,2,3). prove that the vector field	7M	CO4	BL3
	b)	$\hat{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} - (3xy - 2xz + 2z)\hat{k}$ is irrotational	7M	CO4	BL3
7		Show that $curl(f v) = (grad f) \times v + f curl v$.	14M	C04	BL3
8	a)	State Stokes theorem. Verify Stokes theorem for $\hat{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ over the box bounded by the planes $x = 0, x = a, y = 0, y = b$.	14M	C05	BL3