

MARRI LAXMAN REDDY INSTITUTE OF TECHNOLOGY AND MANAGEMENT

(AN AUTONOMOUS INSTITUTION)
(Approved by AICTE, New Delhi & Affiliated to JNTUH, Hyderabad)
Accredited by NBA and NAAC with 'A' Grade & Recognized Under Section2(f) & 12(B)of the UGC act,1956

I B.Tech II Sem Regular/Supply End Examination, September-2022 Applied Physics

(EEE, CSE, CSI, CSM, IT)

Time: 3 Hours. Max. Marks: 70

Note: 1. Question paper consists: Part-A and Part-B.

- 2. In Part A, answer all questions which carries 20 marks.
- 3. In Part B, answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART- A

(10*2 Marks = 20 Marks)

1.	a)	State the Photoelectric effect.	2M	CO1	BL1
	b)	Discuss about Davisson and Germer experiment.	2M	CO1	BL1
	c)	Define drift current.	2M	CO2	BL1
	d)	Draw Fermi level position in P-type semiconductor.	2M	CO2	BL2
	e)	What are the applications of PIN diode?	2M	CO3	BL1
	f)	Write the significance of Semiconductor photo detector.	2M	CO3	BL2
	g)	List out few applications of laser.	2M	CO4	BL1
	h)	What are the applications of optical fibers?	2M	CO4	BL1
	i)	Define dielectric constant.	2M	CO5	BL1
	j)	Illustrate magnetic susceptibility.	2M	CO5	BL2

PART- B

(10*5 Marks = 50 Marks)

2	a)	Derive an equation for Schrodinger's time independent wave equation.	5M	CO1	BL5
	b)	Describe Heisenberg's Uncertainty principle.	5M	CO1	BL6
		OR			
3		Derive an expression for Particle in one dimensional box.	10M	CO1	BL6
4	a)	Explain V-I Characteristics of Zener diode.	5M	CO2	BL2
	b)	Describe Fermi level position with respect to carrier concentration and	5M	CO2	BL6
		temperature.			
		OR			
5		What is Hall effect? Derive an expression for Hall coefficients.	10M	CO2	BL6

	Co	ourse Code: 2020006 Roll No:	MLRS-R20					
6	a)	Explain construction and characteristics of LED.	5M	CO3	BL5			
	b)	Write a note on Solar cell.	5M	CO3	BL1			
OR								
7		Discuss structure, working principle and Characteristics of Avalanche photodiode.	10M	CO3	BL4			
8	a)	Illustrate Losses associated with optical fibers.	5M	CO4	BL2			
	b)	Derive an expression for Acceptance angle and Numerical aperture	5M	CO4	BL6			
OR								
9		With neat diagram describe construction and principle of He-Ne laser.	10M	C04	BL6			
10	a)	Write a note on magnetic Hysteresis.	5M	CO5	BL1			
	b)	Distinguish between Ferroelectrics and Piezoelectrics.	5M	CO5	BL4			
OR								
11		Discuss Classification of magnetic materials.	10M	CO5	BL6			

---00000----

CO: Course Outcomes

BL: Blooms Taxonomy Levels